[1] |
Zhang LZ, Zheng HA, Jiang Y, et al. Mechanical and biological link between cartilage and subchondral bone in osteoarthritis [J]. Arthritis Care Res (Hoboken), 2012, 64: 960-967.
|
[2] |
Brown TD, Johnston RC, Saltzman CL, et al. Posttraumatic osteoarthritis:a first estimate of incidence,prevalence,and burden of disease[J]. J Orthop Trauma, 2021, 9(10): 792-795.
|
[3] |
Furman BD, Strand J, Hembree WC, et al. Joint degeneration following closed intraarticular fracture in the mouse knee: a model of posttraumatic arthritis[J]. J Orthop Res, 2007, 25(5): 578-592.
|
[4] |
Stiffel V, Rundle CH, Sheng MH, et al. A mouse noninvasive intraarticular tibial plateau compression loading-induced injury model of posttraumatic osteoarthritis[J]. Calcif Tissue Int, 2020, 106(2): 158-171.
|
[5] |
Cope PJ, Ourradi K, Li Y, et al. Models of osteoarthritis:the good,the bad and the promising[J]. Osteoarthritis Cartilage, 2019, 27(2): 230-239.
|
[6] |
Mrosek EH, Lahm A, Erggelet C, et al. Subchondral bone trauma causes cartilage matrix degeneration:an immunohistochemical analysis in a canine model[J]. Osteoarthritis Cartilage, 2006, 14(2): 171-178.
|
[7] |
Ward BD, Furman BD, Huebner JL, et al. Absence of posttraumatic arthritis following intraarticular fracture in the MRL/MpJ mouse[J]. Arthritis Rheum, 2008, 58(3): 744-753.
|
[8] |
De Souza RL, Matsuura M, Eckstein F, et al. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element[J]. Bone, 2005, 37(6): 810-818.
|
[9] |
Poulet B, Hamilton RW, Shefelbine S, et al. Characterizing a novel and adjustable noninvasive murine joint loading model[J]. Arthritis Rheum, 2011, 63(1): 137-147.
|
[10] |
Poulet B, Souza RD, Kent AV, et al. Intermittent applied mechanical loading induces subchondral bone thickening that May be intensified locally by contiguous articular cartilage lesions[J]. Osteoarthritis Cartilage, 2015, 23(6): 940-948.
|
[11] |
Ko FC, Dragomir C, Plumb DA, et al. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae[J]. Arthritis Rheum, 2013, 65(6): 1569-1578.
|
[12] |
Poulet B. Non-invasive loading model of murine osteoarthritis[J/OL]. Curr Rheumatol Rep, 2016, 18(7): 40. DOI: 10.1007/s11926-016-0590-z.
|
[13] |
Holyoak DT, Chlebek C, Kim MJ, et al. Low-level cyclic tibial compression attenuates early osteoarthritis progression after joint injury in mice[J]. Osteoarthritis Cartilage, 2019, 27(10): 1526-1536.
|
[14] |
He Z, Nie P, Lu J, et al. Less mechanical loading attenuates osteoarthritis by reducing cartilage degeneration,subchondral bone remodelling,secondary inflammation,and activation of NLRP3 inflammasome[J]. Bone Joint Res, 2020, 9(10): 731-741.
|
[15] |
Wu P, Holguin N, Silva MJ, et al. Early response of mouse joint tissue to noninvasive knee injury suggests treatment targets[J]. Arthritis Rheumatol, 2014, 66(5): 1256-1265.
|
[16] |
Gilbert SJ, Bonnet CS, Blain EJ. Mechanical cues:bidirectional reciprocity in the extracellular matrix drives mechano-signalling in articular cartilage[J/OL]. Int J Mol Sci, 2021, 22(24): 13595. DOI: 10.3390/ijms222413595.
|
[17] |
Beatriz C, Noboru T, Daisuke S, et al. Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection[J]. Arthritis Rheum, 2012, 64(4): 1182-1192.
|
[18] |
Ji X, Ito A, Nakahata A, et al. Effects of in vivo cyclic compressive loading on the distribution of local Col2 and superficial lubricin in rat knee cartilage[J]. J Orthop Res, 2021, 39(3): 543-552.
|
[19] |
Freija H, Ana PL, Sonia SV, et al. Noninvasive mechanical joint loading as an alternative model for osteoarthritic pain[J]. Arthritis & Rheumatology, 2019, 71(7): 1078-1088.
|
[20] |
Ter HF, Luiz AP, Santana-Varela S, et al. Osteoarthritis-related nociceptive behaviour following mechanical joint loading correlates with cartilage damage[J]. Osteoarthritis Cartilage, 2020, 28(3): 383-395.
|
[21] |
Berke IM, Jain E, Yavuz B, et al. NF-kappa B-mediated effects on behavior and cartilage pathology in a non-invasive loading model of post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2021, 29(2): 248-256.
|
[22] |
Haudenschild DR, Carlson AK, Zignego DL, et al. Inhibition of early response genes prevents changes in global joint metabolomic profiles in mouse post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2019, 27(3): 504-512.
|
[23] |
Christiansen BA, Anderson MJ, Lee CA, et al. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2012, 20(7): 773-782.
|
[24] |
Killian ML, Isaac DI, Haut RC, et al. Traumatic anterior cruciate ligament tear and its implications on meniscal degradation:a preliminary novel lapine osteoarthritis model[J]. J Surg Res, 2010, 164(2): 234-241.
|
[25] |
Lockwood KA, Chu BT, Anderson MJ, et al. Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis[J]. J Orthop Res, 2014, 32(1): 79-88.
|
[26] |
Onur TS, Wu R, Chu S, et al. Joint instability and cartilage compression in a mouse model of posttraumatic osteoarthritis[J]. J Orthop Res, 2014, 32(2): 318-323.
|
[27] |
Brown SB, Hornyak JA, Jungels RR, et al. Characterization of post-traumatic osteoarthritis in rats following anterior cruciate ligament rupture by Non-invasive knee injury(NIKI)[J]. J Orthop Res, 2020, 38(2): 356-367.
|
[28] |
Chang JC, Sebastian A, Murugesh DK, et al. Global molecular changes in a tibial compression induced ACL rupture model of post-traumatic osteoarthritis[J]. J Orthop Res, 2017, 35(3): 474-485.
|
[29] |
Sebastian A, Murugesh DK, Mendez ME, et al. Global gene expression analysis identifies age-related differences in knee joint transcriptome during the development of post-traumatic osteoarthritis in mice[J]. Int J Mol Sci, 2020, 21(1): 364.
|
[30] |
Blaker CL, Ashton DM, Doran N, et al. Sex- and injury-based differences in knee biomechanics in mouse models of post-traumatic osteoarthritis [J/OL]. J Biomech, 2021, 114:110152. DOI: 10.1016/j.jbiomech.
|
[31] |
Gilbert SJ, Bonnet CS, Stadnik P, et al. Inflammatory and degenerative phases resulting from anterior cruciate rupture in a non‐invasive murine model of post-traumatic osteoarthritis[J]. J Orthop Res, 2018, 36(8): 2118-2127.
|
[32] |
White MS, Brancati RJ, Lepley LK. Relationship between altered knee kinematics and subchondral bone remodeling in a clinically translational model of ACL injury[J]. J Orthop Res, 2022, 40(1): 74-86.
|
[33] |
Ji X, Nakahata A, Zhao Z, et al. A non-invasive method for generating the cyclic loading-induced intra-articular cartilage lesion model of the rat knee [J/OL]. J Vis Exp, 2021, (173): 10.3791/62660. DOI: 10.3791/62660.
|
[34] |
陈彦丞,罗骏,陈锦成,等.长期低温环境对大鼠膝骨关节炎进展的影响[J/CD].中华关节外科杂志(电子版),2021,15(1):71-77.
|
[35] |
Sebastian A, Chang JC, Mendez ME, et al. Comparative transcriptomics identifies novel genes and pathways involved in post-traumatic osteoarthritis development and progression [J/OL]. Int J Mol Sci, 2018, 19(9): 2657. DOI 10.3390/ijms19092657.
|
[36] |
Saito M, Nishitani K, Ikeda HO, et al. A VCP modulator, KUS121, as a promising therapeutic agent for post-traumatic osteoarthritis[J/OL]. Sci Rep, 2020, 10(1): 20787. DOI: 10.1038/s41598-021-86883-y.
|