切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 86 -92. doi: 10.3877/cma.j.issn.1674-134X.2023.01.012

综述

非侵入性加压负载模型在膝骨关节炎研究中的应用
杨晓龙1, 张立智1,(), 刘晓东1   
  1. 1. 200090 上海,杨浦区中心医院(同济大学附属杨浦医院)骨科
  • 收稿日期:2021-11-03 出版日期:2023-02-01
  • 通信作者: 张立智
  • 基金资助:
    上海市卫健委科研项目(202240065); 国家自然科学基金面上项目(81572218); 上海市自然科学基金(13ZR1439100)

Noninvasive load in research of knee osteoarthritis

Xiaolong Yang1, Lizhi Zhang1,(), Xiaodong Liu1   

  1. 1. Department of Yangpu Hospital, School of medicine, Tongji University, Shanghai 200090, China
  • Received:2021-11-03 Published:2023-02-01
  • Corresponding author: Lizhi Zhang
引用本文:

杨晓龙, 张立智, 刘晓东. 非侵入性加压负载模型在膝骨关节炎研究中的应用[J]. 中华关节外科杂志(电子版), 2023, 17(01): 86-92.

Xiaolong Yang, Lizhi Zhang, Xiaodong Liu. Noninvasive load in research of knee osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(01): 86-92.

骨关节炎(OA)与异常应力作用下骨和软骨共同病变密切相关,目前机制仍不清楚。为了研究其机制,目前常用有自发性、基因修饰、侵入性模型(手术诱导,化学诱导)等多种动物模型。这些模型都是OA研究的重要工具,但这些模型具有混杂效应,并不能完全反应异常应力在整个病变过程中的作用。随着研究深入和技术提高,非侵入性加压负载模型逐渐地被用于研究OA的疾病发展,其采用对活体动物直接加压负载方式,形成多种不同形式的损伤,来模拟临床中异常应力作用下,或各种创伤后OA的发生和发展。非侵入性加压负载模型不仅可模拟外部应力,而且还可量化应力的负载条件,进而对疾病发生、发展过程中的异常应力或过度负载等损伤过程进行更客观的研究。本文通过对常用的非侵入性加压负载模型的应用情况和研究进展进行综述,为将来针对异常应力负载和创伤后膝OA研究提供有意义的一种途径,为探索OA病变机制以及相关预防和治疗提供潜在的研究方法和理论依据。

Osteoarthritis (OA) closely associates with pathological changes of bone and cartilage under abnormal stress, however, the mechanism of it is still unclear. In order to study the mechanism, many animal models such as spontaneity, gene modification, invasive models (surgical and chemical inductions) are commonly used. All of the models are important tools for OA research, but they have mixed effects and unable to comprehensively reflect the role of abnormal stress in the whole pathological process. With the development in research and improvement of technologies, non-invasive compression-loading model has been gradually employed to study the development of OA. With a direct compression-loading, it can create variety types of injuries to simulate the occurrence and development of OA induced by abnormal stress or various injuries in clinic. A non-invasive loading model can not only simulate externally loaded stress, but also quantify the load and then make more objective studies on the injury caused by abnormal stress in the whole process of disease. This paper summarised the application and research progress of non-invasive compression-loading models. It may provide a meaningful way for the future study of abnormal stress load and post-traumatic knee OA, to explore the mechanism of OA lesions and relevant prevention and treatment, with a potential research method and theoretical basis.

表1 常见非侵入性加压负载模型及特点
[1]
Zhang LZ, Zheng HA, Jiang Y, et al. Mechanical and biological link between cartilage and subchondral bone in osteoarthritis [J]. Arthritis Care Res (Hoboken), 2012, 64: 960-967.
[2]
Brown TD, Johnston RC, Saltzman CL, et al. Posttraumatic osteoarthritis:a first estimate of incidence,prevalence,and burden of disease[J]. J Orthop Trauma, 2021, 9(10): 792-795.
[3]
Furman BD, Strand J, Hembree WC, et al. Joint degeneration following closed intraarticular fracture in the mouse knee: a model of posttraumatic arthritis[J]. J Orthop Res, 2007, 25(5): 578-592.
[4]
Stiffel V, Rundle CH, Sheng MH, et al. A mouse noninvasive intraarticular tibial plateau compression loading-induced injury model of posttraumatic osteoarthritis[J]. Calcif Tissue Int, 2020, 106(2): 158-171.
[5]
Cope PJ, Ourradi K, Li Y, et al. Models of osteoarthritis:the good,the bad and the promising[J]. Osteoarthritis Cartilage, 2019, 27(2): 230-239.
[6]
Mrosek EH, Lahm A, Erggelet C, et al. Subchondral bone trauma causes cartilage matrix degeneration:an immunohistochemical analysis in a canine model[J]. Osteoarthritis Cartilage, 2006, 14(2): 171-178.
[7]
Ward BD, Furman BD, Huebner JL, et al. Absence of posttraumatic arthritis following intraarticular fracture in the MRL/MpJ mouse[J]. Arthritis Rheum, 2008, 58(3): 744-753.
[8]
De Souza RL, Matsuura M, Eckstein F, et al. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element[J]. Bone, 2005, 37(6): 810-818.
[9]
Poulet B, Hamilton RW, Shefelbine S, et al. Characterizing a novel and adjustable noninvasive murine joint loading model[J]. Arthritis Rheum, 2011, 63(1): 137-147.
[10]
Poulet B, Souza RD, Kent AV, et al. Intermittent applied mechanical loading induces subchondral bone thickening that May be intensified locally by contiguous articular cartilage lesions[J]. Osteoarthritis Cartilage, 2015, 23(6): 940-948.
[11]
Ko FC, Dragomir C, Plumb DA, et al. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae[J]. Arthritis Rheum, 2013, 65(6): 1569-1578.
[12]
Poulet B. Non-invasive loading model of murine osteoarthritis[J/OL]. Curr Rheumatol Rep, 2016, 18(7): 40. DOI: 10.1007/s11926-016-0590-z.
[13]
Holyoak DT, Chlebek C, Kim MJ, et al. Low-level cyclic tibial compression attenuates early osteoarthritis progression after joint injury in mice[J]. Osteoarthritis Cartilage, 2019, 27(10): 1526-1536.
[14]
He Z, Nie P, Lu J, et al. Less mechanical loading attenuates osteoarthritis by reducing cartilage degeneration,subchondral bone remodelling,secondary inflammation,and activation of NLRP3 inflammasome[J]. Bone Joint Res, 2020, 9(10): 731-741.
[15]
Wu P, Holguin N, Silva MJ, et al. Early response of mouse joint tissue to noninvasive knee injury suggests treatment targets[J]. Arthritis Rheumatol, 2014, 66(5): 1256-1265.
[16]
Gilbert SJ, Bonnet CS, Blain EJ. Mechanical cues:bidirectional reciprocity in the extracellular matrix drives mechano-signalling in articular cartilage[J/OL]. Int J Mol Sci, 2021, 22(24): 13595. DOI: 10.3390/ijms222413595.
[17]
Beatriz C, Noboru T, Daisuke S, et al. Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection[J]. Arthritis Rheum, 2012, 64(4): 1182-1192.
[18]
Ji X, Ito A, Nakahata A, et al. Effects of in vivo cyclic compressive loading on the distribution of local Col2 and superficial lubricin in rat knee cartilage[J]. J Orthop Res, 2021, 39(3): 543-552.
[19]
Freija H, Ana PL, Sonia SV, et al. Noninvasive mechanical joint loading as an alternative model for osteoarthritic pain[J]. Arthritis & Rheumatology, 2019, 71(7): 1078-1088.
[20]
Ter HF, Luiz AP, Santana-Varela S, et al. Osteoarthritis-related nociceptive behaviour following mechanical joint loading correlates with cartilage damage[J]. Osteoarthritis Cartilage, 2020, 28(3): 383-395.
[21]
Berke IM, Jain E, Yavuz B, et al. NF-kappa B-mediated effects on behavior and cartilage pathology in a non-invasive loading model of post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2021, 29(2): 248-256.
[22]
Haudenschild DR, Carlson AK, Zignego DL, et al. Inhibition of early response genes prevents changes in global joint metabolomic profiles in mouse post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2019, 27(3): 504-512.
[23]
Christiansen BA, Anderson MJ, Lee CA, et al. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2012, 20(7): 773-782.
[24]
Killian ML, Isaac DI, Haut RC, et al. Traumatic anterior cruciate ligament tear and its implications on meniscal degradation:a preliminary novel lapine osteoarthritis model[J]. J Surg Res, 2010, 164(2): 234-241.
[25]
Lockwood KA, Chu BT, Anderson MJ, et al. Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis[J]. J Orthop Res, 2014, 32(1): 79-88.
[26]
Onur TS, Wu R, Chu S, et al. Joint instability and cartilage compression in a mouse model of posttraumatic osteoarthritis[J]. J Orthop Res, 2014, 32(2): 318-323.
[27]
Brown SB, Hornyak JA, Jungels RR, et al. Characterization of post-traumatic osteoarthritis in rats following anterior cruciate ligament rupture by Non-invasive knee injury(NIKI)[J]. J Orthop Res, 2020, 38(2): 356-367.
[28]
Chang JC, Sebastian A, Murugesh DK, et al. Global molecular changes in a tibial compression induced ACL rupture model of post-traumatic osteoarthritis[J]. J Orthop Res, 2017, 35(3): 474-485.
[29]
Sebastian A, Murugesh DK, Mendez ME, et al. Global gene expression analysis identifies age-related differences in knee joint transcriptome during the development of post-traumatic osteoarthritis in mice[J]. Int J Mol Sci, 2020, 21(1): 364.
[30]
Blaker CL, Ashton DM, Doran N, et al. Sex- and injury-based differences in knee biomechanics in mouse models of post-traumatic osteoarthritis [J/OL]. J Biomech, 2021, 114:110152. DOI: 10.1016/j.jbiomech.
[31]
Gilbert SJ, Bonnet CS, Stadnik P, et al. Inflammatory and degenerative phases resulting from anterior cruciate rupture in a non‐invasive murine model of post-traumatic osteoarthritis[J]. J Orthop Res, 2018, 36(8): 2118-2127.
[32]
White MS, Brancati RJ, Lepley LK. Relationship between altered knee kinematics and subchondral bone remodeling in a clinically translational model of ACL injury[J]. J Orthop Res, 2022, 40(1): 74-86.
[33]
Ji X, Nakahata A, Zhao Z, et al. A non-invasive method for generating the cyclic loading-induced intra-articular cartilage lesion model of the rat knee [J/OL]. J Vis Exp, 2021, (173): 10.3791/62660. DOI: 10.3791/62660.
[34]
陈彦丞,罗骏,陈锦成,等.长期低温环境对大鼠膝骨关节炎进展的影响[J/CD].中华关节外科杂志(电子版)202115(1):71-77.
[35]
Sebastian A, Chang JC, Mendez ME, et al. Comparative transcriptomics identifies novel genes and pathways involved in post-traumatic osteoarthritis development and progression [J/OL]. Int J Mol Sci, 2018, 19(9): 2657. DOI 10.3390/ijms19092657.
[36]
Saito M, Nishitani K, Ikeda HO, et al. A VCP modulator, KUS121, as a promising therapeutic agent for post-traumatic osteoarthritis[J/OL]. Sci Rep, 2020, 10(1): 20787. DOI: 10.1038/s41598-021-86883-y.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[4] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[5] 梁家敏, 黄子荣, 崔家鸣, 钟名金, 冯文哲, 陈康, 胡艳, 欧阳侃, 杨雷, 王大平, 王满宜, 朱伟民. 前交叉韧带保留残端重建促进膝关节功能的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 708-714.
[6] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[7] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[8] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[9] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[10] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[11] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[12] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[13] 张子砚, 曾红, 许苑晶, 郭璐琦, 王金武, 王少白, 任富超, 缪伟强, 戴尅戎, 王茹. 膝关节生物力学标志物预测膝关节炎研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 315-320.
[14] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
[15] 刘新光, 杨滨, 刘晨, 王晓华, 张克. 股骨前皮质切割在前、后参考系统全膝关节置换术中发生的对比研究及锯片摆动偏差分析[J]. 中华临床医师杂志(电子版), 2023, 17(05): 507-512.
阅读次数
全文


摘要