切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 722 -725. doi: 10.3877/cma.j.issn.1674-134X.2023.05.019

综述

深度学习技术在膝关节疾病中的研究现状与展望
李锐颖, 危望, 王达志, 时志斌()   
  1. 710004 西安交通大学第二附属医院骨一科
  • 收稿日期:2023-02-19 出版日期:2023-10-01
  • 通信作者: 时志斌
  • 基金资助:
    陕西省重点研发高校联合项目(2020GXLH-Y-011)

Current status and perspectives of research on deep learning techniques in knee disorders

Ruiying Li, Wang Wei, Dazhi Wang, Zhibin Shi()   

  1. The First Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an 710004, China
  • Received:2023-02-19 Published:2023-10-01
  • Corresponding author: Zhibin Shi
引用本文:

李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J/OL]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.

Ruiying Li, Wang Wei, Dazhi Wang, Zhibin Shi. Current status and perspectives of research on deep learning techniques in knee disorders[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(05): 722-725.

膝关节是人体最重要的关节之一,相关疾病的诊断和治疗也一直是骨关节外科领域的研究热点。深度学习技术具有高效率、低成本、高度一致的优势,理论上可以很好地解决在临床诊疗中存在的一系列痛点。然而作为一种尚未完全成熟的新技术,深度学习技术向临床推广的过程中也会面临可解释性不足与高质量数据集缺失等障碍。本文尝试对深度学习技术目前的优势、不足、未来发展方向等方面,以及其在膝关节疾病中的研究现状作简要介绍。

The knee joint is one of the most important joints in the human body, and the diagnosis and treatment of related diseases has been a hot research topic in the field of bone and joint surgery. Deep learning technology has the advantages of high efficiency, low cost and high consistency, and can theoretically solve a series of pain points in clinical treatment. However, as a new technology that has not yet fully matured, deep learning technology faces the obstacles of insufficient interpretability and lack of high-quality datasets in the process of clinical extension. This paper attempted to provide a brief overview of the current state of research on deep learning technology in knee diseases in terms of its current strengths, weaknesses and future directions.

[1]
Grawe B, SchroederAJ, Kakazu R, et al. Lateral collateral ligament injury about the knee: anatomy, evaluation, and management[J/OL]. J Am Acad Orthop Surg, 2018, 26(6): e120-e127. DOI: 10.5435/JAAOS-D-16-00028.
[2]
Pedoia V, Majumdar S, LinkTM. Segmentation of joint and musculoskeletal tissue in the study of arthritis[J]. Magma, 2016, 29(2): 207-221.
[3]
Norman B, Pedoia V, Majumdar S. Use of 2D U-net convolutional neural networks for automated cartilage and Meniscussegmentation of knee MR imaging data to determine relaxometry and morphometry[J]. Radiology, 2018, 288(1): 177-185.
[4]
Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat’s striate cortex[J]. J Physiol, 1959, 148(3): 574-591.
[5]
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J/OL]. Proc IEEE, 1998, 86(11): 2278-2324. DOI: 10.1109/5.726791.
[6]
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[7]
陈宁杰,赵卉,郝风云,等. 晚期膝骨关节炎滑膜MRI厚度与疼痛及功能评分相关性[J/CD]. 中华关节外科杂志(电子版), 2019, 13(4): 412-418.
[8]
中华医学会骨科学分会关节外科学组,中国医师协会骨科医师分会骨关节炎学组,国家老年疾病临床医学研究中心(湘雅医院), 等. 中国骨关节炎诊疗指南(2021年版)[J]. 中华骨科杂志2021, 41(18): 1291-1314.
[9]
White LM, Schweitzer ME, Deely DM, et al. The effect of training and experience on the magnetic resonance imaging interpretation of meniscal tears[J]. Arthroscopy, 1997, 13(2): 224-228.
[10]
Couteaux V, Si-Mohamed S, Nempont O, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN[J]. Diagn Interv Imaging, 2019, 100(4): 235-242.
[11]
Liu F, Zhou Z, Samsonov A, et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection[J]. Radiology, 2018, 289(1):160-169.
[12]
Tack A, Shestakov A, Lüdke D, et al. A multi-task deep learning method for detection of meniscal tears in MRI data from the osteoarthritis initiative database[J/OL]. Front Bioeng Biotechnol, 2021, 9: 747217. DOI: 10.3389/fbioe.2021.747217.
[13]
Rizk B, Brat H, Zille P, et al. Meniscal lesion detection and characterization in adult knee MRI: a deep learning model approach with external validation[J]. Phys Med, 2021, 83: 64-71.
[14]
Günther KP, Sun Y. Reliability of radiographic assessment in hip and knee osteoarthritis[J]. Osteoarthritis Cartilage, 1999, 7(2): 239-246.
[15]
Quatman CE, Hettrich CM, Schmitt LC, et al. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review[J]. Am J Sports Med, 2011, 39(7): 1557-1568.
[16]
Pedoia V, Lee J, Norman B, et al. Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire Osteoarthritis Initiative baseline cohort[J]. Osteoarthritis Cartilage, 2019, 27(7): 1002-1010.
[17]
Tiulpin A, Thevenot J, Rahtu E, et al. Automatic knee osteoarthritis diagnosis from plain radiographs: adeep learning-based approach[J/OL]. SciRep, 2018, 8(1): 1727. DOI: 10.1038/s41598-018-20132-7.
[18]
Norman B, Pedoia V, Noworolski A, et al. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs[J]. J Digit Imaging, 2019, 32(3): 471-477.
[19]
Namiri NK, Lee J, Astuto B, et al. Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis[J/OL]. Sci Rep, 2021, 11(1): 10915. DOI: 10.1038/s41598-021-90292-6.
[20]
Chang PD, Wong TT, Rasiej MJ. Deep learning for detection of complete anterior cruciate ligament tear[J]. J Digit Imaging, 2019, 32(6): 980-986.
[21]
Liu F, Guan B, Zhou Z, et al. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning[J/OL]. Radiol Artif Intell, 2019, 1(3): 180091. DOI: 10.1148/ryai.2019180091.
[22]
Razali MH, Sazwan SM, Mahmood M, et al. Anterior cruciate ligament (ACL) coronal view injury diagnosis system using convolutional neural network[C]//Proceedings of the 2019 2nd International Conference on Electronics and Electrical Engineering Technology. September 25 - 27, 2019, Penang, Malaysia. New York: ACM, 2019: 118-122.
[23]
Germann C, Marbach G, Civardi F, et al. Deep convolutional neural network-based diagnosis of anterior cruciate ligament tears: performance comparison of homogenous versus heterogeneous knee MRI cohorts with different pulse sequence protocols and 1.5-T and 3-T magnetic field strengths[J]. Invest Radiol, 2020, 55(8): 499-506.
[24]
Namiri NK, Flament I, Astuto B, et al. Deep learning for hierarchical severity staging of anterior cruciate ligament injuries from MRI[J/OL]. Radiol Artif Intell, 2020, 2(4): e190207. DOI: 10.1148/ryai.2020190207.
[25]
Tran A, Lassalle L, Zille P, et al. Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation[J]. Eur Radiol, 2022, 32(12): 8394-8403.
[26]
Sridhar S, Amutharaj J, Valsalan P, et al. A torn ACL mapping in knee MRI images using deep convolution neural network with inception-v3[J/OL]. J Healthc Eng, 2022, 2022: 7872500. DOI: 10.1155/2022/7872500.
[27]
Fripp J, Crozier S, WarfieldSK, et al. Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee[J]. IEEE Trans Med Imaging, 2010, 29(1): 55-64.
[28]
张银婷,彭鳒侨. 基于MRI图像的计算机膝关节建模新思路[J/CD]. 中华关节外科杂志(电子版), 2018, 12(6): 786-790.
[29]
Aprovitola A, Gallo L. Knee bone segmentation from MRI: a classification and literature review[J]. Biocybern Biomed Eng, 2016, 36(2): 437-449.
[30]
Du Y, Almajalid R, Shan J, et al. A novel method to predict knee osteoarthritis progression on MRI using machine learning methods[J]. IEEE Trans Nanobioscience, 2018, 17(3): 228-236.
[31]
Flannery SW, Kiapour AM, Edgar DJ, et al. Automated magnetic resonance image segmentation of the anterior cruciate ligament[J]. J Orthop Res, 2021, 39(4): 831-840.
[32]
Chang GH, Park LK, Le NA, et al. Subchondral bone length in knee osteoarthritis: adeep learning-derived imaging measure and its association with radiographic and clinical outcomes[J]. Arthritis Rheumatol, 2021, 73(12): 2240-2248.
[33]
Deng Y, You L, Wang Y, et al. A coarse-to-fine framework for automated knee bone and cartilage segmentation data from the osteoarthritis initiative[J]. J Digit Imaging, 2021, 34(4): 833-840.
[34]
Felfeliyan B, Hareendranathan A, Kuntze G, et al. Improved-Mask R-CNN: towards an accurate generic MSK MRI instance segmentation platform (data from the Osteoarthritis Initiative)[J/OL]. Comput Med Imaging Graph, 2022, 97: 102056. DOI: 10.1016/j.compmedimag.2022.102056.
[35]
Lipton ZC. The mythos of model interpretability[J]. Commun ACM, 2018, 61(10): 36-43.
[36]
Jeon Y, Yoshino K, Hagiwara S, et al. Interpretable and lightweight 3-D deep learning model for automated ACL diagnosis[J]. IEEE J Biomed Health Inform, 2021, 25(7): 2388-2397.
[37]
Ölmez E, Akdoǧan V, Korkmaz M, et al. Automatic segmentation of Meniscus in multispectral MRI using regions with convolutional neural network (R-CNN)[J]. J Digit Imaging, 2020, 33(4): 916-929.
[38]
Manna S, Bhattacharya S, Pal U. Self-supervised representation learning for detection of ACL tear injury in knee MR videos[J]. Pattern Recognit Lett, 2022, 154: 37-43.
[39]
Wahid A, Ali Shah J, KhanAU, et al. Multi-layered basis pursuit algorithms for classification of MR images of knee ACL tear[J/OL]. IEEE Access, 2020, 8: 205424-205435. DOI: 10.1109/ACCESS.2020.3037745.
[40]
Awan MJ, Rahim MSM, Salim N, et al. Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach[J/OL]. Diagnostics, 2021, 11(1): 105. DOI: 10.3390/diagnostics11010105.
[41]
Awan MJ, Rahim MSM, Salim N, et al. Automated knee MR images segmentation of anterior cruciate ligament tears[J/OL]. Sensors, 2022, 22(4): 1552. DOI: 10.3390/s22041552.
[42]
Calivá F, Kamat S, Morales Martinez A, et al. Surface spherical encoding and contrastive learning for virtual bone shape aging[J/OL]. Med Image Anal, 2022, 77: 102388. DOI: 10.1016/j.media.2022.102388.
[43]
Kanthavel R, Dhaya R. Prediction model using reinforcement deep learning technique for osteoarthritis disease diagnosis[J]. Comput Syst Sci Eng, 2022, 42(1): 257-269.
[44]
Moustakidis S, Christodoulou E, Papageorgiou E, et al. Application of machine intelligence for osteoarthritis classification: a classical implementation and a quantum perspective[J]. Quantum MachIntell, 2019, 1(3): 73-86.
[45]
Tan JS, Tippaya S, Binnie T, et al. Predicting knee joint kinematics from wearable sensor data in people with knee osteoarthritis and clinical considerations for future machine learning models[J/OL]. Sensors, 2022, 22(2): 446. DOI: 10.3390/s22020446.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[3] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[4] 孔德铭, 刘铮, 李睿, 钱文伟, 王飞, 蔡道章, 柴伟. 人工智能辅助全髋关节置换三维术前规划准确性评价[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 431-438.
[5] 赵飞鸿, 陈颖杰, 林静芳, 郑晓春, 廖燕凌. 超声引导下周围神经阻滞对髋膝关节置换术后恢复的影响[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 457-468.
[6] 高小康, 张净宇, 刘金伟, 田东牧, 胡永成, 徐卫国. 连接型人工膝关节假体运动和负重模式的演变和进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 505-516.
[7] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[8] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[11] 宋庆成, 郑占乐, 王天瑞, 王宇钏, 张凯旋, 纳静, 蔚佳昊, 杨思繁, 宋九宏, 张英泽. “人老膝不老”:膝关节健康管理的全方位探索与实践[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 321-324.
[12] 郑占乐, 王宇钏, 蔚佳昊, 宋庆成, 张凯旋, 纳静, 王天瑞, 宋九宏, 张英泽, 王娟. 保膝须“开膝”——“开膝”在膝骨关节炎中的临床应用价值[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 325-330.
[13] 王浩汀, 尚运涛, 曹光, 张延祠, 李军勇. 胫骨高位截骨联合关节镜与单髁置换治疗单间室膝关节骨性关节炎的临床疗效比较[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 229-236.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 于晓光, 秦永辉, 李佳, 贾国兴, 李军, 赵振栓, 刘国彬. 人工单髁置换术治疗膝关节内侧间室骨关节炎合并前交叉韧带功能不良的近期疗效[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 337-342.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?