切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 698 -702. doi: 10.3877/cma.j.issn.1674-134X.2020.06.009

所属专题: 文献

基础论著

体外研究橙皮苷抑制钛颗粒介导的破骨细胞分化
凡军1,(), 曹丽萍1   
  1. 1. 201599 上海,金山区亭林医院骨科
  • 收稿日期:2020-03-19 出版日期:2020-12-01
  • 通信作者: 凡军

Hesperidin inhibits osteoclast differentiation mediated by titanium particles in vitro

Jun Fan1,(), Liping Cao1   

  1. 1. Department of Orthopedics, Tinglin Hospital, Jinshan District, Shanghai 201599, China
  • Received:2020-03-19 Published:2020-12-01
  • Corresponding author: Jun Fan
引用本文:

凡军, 曹丽萍. 体外研究橙皮苷抑制钛颗粒介导的破骨细胞分化[J]. 中华关节外科杂志(电子版), 2020, 14(06): 698-702.

Jun Fan, Liping Cao. Hesperidin inhibits osteoclast differentiation mediated by titanium particles in vitro[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(06): 698-702.

目的

研究橙皮苷对钛颗粒介导前破骨细胞分化及成熟的影响。

方法

骨髓巨噬细胞在巨噬细胞集落刺激因子(M-CSF)30 ng/ml及核因子κB受体活化因子配体(Rankl)50 ng/ml刺激下,诱导分化为破骨细胞。扫描电镜观察钛磨损颗粒形貌结构。对不同浓度下橙皮苷对巨噬细胞增殖的影响进行t检验分析得出最低有效浓度;对抗酒石酸酸性磷酸酶(TRAP)阳性细胞数及骨吸收陷窝面积判断橙皮苷对破骨细胞分化及成熟的影响。最后通过实时定量PCR(RT-PCR)验证橙皮苷对钛颗粒介导的破骨基因,包括活化T细胞核因子(NFATc1)、组织蛋白酶K (CTSK)、TRAP的影响。TRAP阳性细胞数及骨吸收陷窝面积、RT-PCR结果数据均采用t检验分析。

结果

扫描电镜显示钛磨损颗粒大小在1~3 μm。CCK-8实验结果显示橙皮苷对巨噬细胞增殖有促进作用,浓度超过40 μmol/L后,会对巨噬细胞产生抑制作用(F=40.1, P<0.01),所以选择40 μmol/L作为对巨噬细胞分化的影响。在抗酒石酸酸性磷酸酶染色中发现40 μmol/L的橙皮苷会明显抑制前破骨细胞的分化,TRAP阳性细胞数目及破骨细胞的面积明显减少(t=5.5,P<0.05)。与对照组相比,扫描电镜观察钛颗粒介导骨吸收陷窝面积明显增多,但加入40 μmol/L的橙皮苷后,这种吸收效果或明显减少(t=6.1,P<0.05)。最后,通过RT-PCR实验得出,40 μmol/L的橙皮苷会明显抑制破骨细胞分化相关NFATc1, CTSK,TRAP基因(t=7.1、4.8、9.1,均为P<0.05)。

结论

橙皮苷抑制钛颗粒介导的破骨细胞分化及成熟。

Objective

To investigate the effects of hesperidin on titanium particles-mediated osteoclast differentiation and maturation.

Methods

Bone marrow macrophages were induced to differentiate into osteoclasts under the stimulation of M-CSF (30ng / ml) and Rankl (50ng / ml). SEM was used to observe the morphology and structure of titanium particles. Cell counting kit 8(CCK8) was used to screen the lowest effective concentration of hesperidin. The effects of hesperidin on osteoclast differentiation and maturation was determined by observing the number of tanrate resistaIlt acid phosphatase (TRAP) positive cells and observing the area of bone resorption pits by SEM. The effects of hesperidin on titanium particle-mediated osteoclast marker genes including nuclear factor of activated T-cells cytoplasmic one(NFATc1), cathepsin K(CK), TRAP was detected by real-time PCR(RT-PCR).

Results

The size of titanium particles were 1-3 μm.CCK-8 showed that hesperidin had a significant inhibitory effect on macrophages when the concentration of hesperidin exceeded 40 μmol/L (F=40.1, P<0.01). TRAP staining revealed that hesperidin significantly inhibited the differentiation of pre-osteoclasts. SEM showed that the area of the titanium particles mediated bone resorption was significantly increased, However, after the addition of 40 μmol/L hesperidin, the absorption effect was significantly reduced (t=6.1, P<0.05). Hesperidin significantly inhibited the expression of osteoclast-related genes, including NFATc1, CTSK, and TRAP(t=7.1, 4.8, 9.1, all P<0.05).

Conclusion

Hesperidin may inhibite titanium particles-mediated osteoclast differentiation and maturation.

图1 钛颗粒的扫描电镜图,示颗粒大小为1~3 μm
图2 不同浓度的橙皮苷对巨噬细胞活性的影响
图3 破骨细胞的TRAP染色及阳性细胞计数。图A~B为TRAP染色光学显微镜照片,图A为空白组、图B为实验组,示空白组破骨细胞融合成环的面积更大TRAP阳性细胞数更多;图C为TRAP阳性细胞数两组比较柱状图,示实验组TRAP阳性细胞数明显低于对照组
图4 橙皮苷影响骨片骨陷窝吸收的比较。图A~B为骨片骨陷窝吸收扫描电镜图,图A为空白组、图B为实验组,示实验组骨片吸收陷窝明显少于空白组;图C为骨吸收面积比较柱状图,示空白组骨吸收面积明显大于实验组
图5 橙皮苷对破骨细胞分化过程中相关基因的影响。图A为TRAP基因表达柱状图;图B为CTSK基因表达柱状图;图C为NFATc1基因表达柱状图;各图示实验组中TRAP、CTSK、NFATc1基因明显低于空白组
[1]
Tsai CH, Muo CH, Hung CH, et al. Disorder-related risk factors for revision total hip arthroplasty after hip hemiarthroplasty in displaced femoral neck fracture patients: a nationwide population-based cohort study[J]. J Orthop Surg Res, 2016, 11(1):66-74.
[2]
Song K, Yao Y, Rong Z, et al. The preoperative incidence of deep vein thrombosis (DVT) and its correlation with postoperative DVT in patients undergoing elective surgery for femoral neck fractures[J]. Arch Orthop Trauma Surg, 2016, 136(10):1459-1464.
[3]
Liu X, Zhu S, Cui J, et al. Strontium ranelate inhibits titanium-particle-induced osteolysis by restraining inflammatory osteoclastogenesis in vivo[J]. Acta Biomater, 2014, 10(11):4912-4918.
[4]
Vallés G, Pérez C, Boré A, et al. Simvastatin prevents the induction of interleukin-6 gene expression by Titanium particles in human osteoblastic cells[J]. Acta Biomater, 2013, 9(1):4916-4925.
[5]
Moura SR, Bras JP, Freitas J, et al. miR-99a in bone homeostasis: regulating osteogenic lineage commitment and osteoclast differentiation[J/OL]. Bone, 2020, 5(134). doi:10.1016/j.bone.2020.115303.
[6]
Zhai Z, Qu X, Li H, et al. The effect of metallic Magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling[J]. Biomaterials, 2014, 35(24):6299-6310.
[7]
Usami S, Yamazaki Y, Yuguchi M, et al. Temporospatial distribution of osteogenic and osteoclastic cells during development of the tarsometatarsal skeleton in the chick embryo (Gallus gallus)[J]. J Oral Sci, 2020, 62(2):212-216.
[8]
Rasquel-Oliveira FS, Manchope MF, Staurengo-Ferrari L, et al. Hesperidin methyl chalcone interacts with NFκB Ser276 and inhibits zymosan-induced joint pain and inflammation, and RAW 264.7 macrophage activation[J]. Inflammopharmacology, 2020, 28(4):979-992.
[9]
Chen X, Li XF, Chen Y, et al. Hesperetin derivative attenuates CCl(4)-induced hepatic fibrosis and inflammation by Gli-1-dependent mechanisms[J/OL]. Int Immunopharmacol, 2019, 76. doi:10.1016/j.intimp.2019.105838.
[10]
Trzeciakiewicz A, Habauzit V, Mercier S, et al. Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signalling pathway[J]. J Nutr Biochem, 2010, 21(5):424-431.
[11]
Zhang Y, Gu X, Li D, et al. METTL3 regulates osteoblast differentiation and inflammatory response via Smad signaling and MAPK signaling[J]. Int J Mol Sci, 2019, 21(1):199-214.
[12]
Liu FX, Zhu ZA, Mao YQ, et al. Inhibition of Titanium particle-induced osteoclastogenesis through inactivation of NFATc1 by VIVIT peptide[J]. Biomaterials, 2009, 30(9):1756-1762.
[13]
Tang W, Xiao L, Ge G, et al. Puerarin inhibits titanium particle-induced osteolysis and RANKL-induced osteoclastogenesis via suppression of the NF-κB signaling pathway[J]. J Cell Mol Med, 2020, 24(24):1-12.
[14]
Longbin, Xiong, Liu, et al. Acetyl-11-keto-β-boswellic acid attenuates titanium particle-induced osteogenic inhibition via activation of the GSK-3β/β-catenin signaling pathway[J]. Theranostics, 2019, 9(24):7140-7155.
[15]
Mingzheng Peng, Lei Qiang, Yan Xu, et al. Modification of cysteine 179 in IKKβ by ursolic acid inhibits titanium wear particles-induced inflammation, osteoclastogenesis and hydroxyla-patite resorption[J].Mol Pharm, 2018, 15(11):5244-5251.
[16]
Son H S, Lee J, Lee H I, et al. Benzydamine inhibits osteoclast differentiation and bone resorption via down-regulation of interleukin-1 β expression[J]. Acta Pharm Sin B, 2020, 10(3):462-474.
[17]
Inoue K, Hu X, Zhao B, et al. Regulatory network mediated by RBP-J/NFATc1-miR182 controls inflammatory bone resorption[J]. FASEB J, 2020, 34(2):2392-2407.
[18]
Hu J, Li X, Chen Y, et al. The protective effect of WKYMVm peptide on inflammatory osteolysis through regulating NF-κB and CD9/gp130/STAT3 signalling pathway[J]. J Cell Mol Med, 2020, 24(2):1893-1905.
[19]
Y Ge, K Feng, X Liu, et al. Quercetin inhibits macrophage polarization through the p38α/β signalling pathway and regulates OPG/RANKL balance in a mouse skull model[J]. J Cell Mol Med, 2020, 24(5):3203-3216.
[20]
De L, Hui W, Zhuokai L, et al. The inhibition of RANKL expression in fibroblasts attenuate CoCr particles induced aseptic prosthesis loosening via the MyD88-independent TLR signaling pathway[J]. Biochem Biophys Res Commun, 2018, 503(2):1115-1122.
[21]
Zhang Y, Jiang P, Li W, et al. Calcineurin/NFAT signaling pathway mediates titanium particle-induced inflammation and osteoclast formation by inhibiting RANKL and M-CSF in vitro[J]. Mol Med Rep, 2017, 16(6):8223-8230.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 皮颖, 王高, 张强, 黄志荣. 年轻患者初次髋关节置换术后关节翻修的原因分析[J]. 中华关节外科杂志(电子版), 2023, 17(03): 430-434.
[3] 刘鹏, 邓亚鹏, 曹国定, 高余, 封国超, 刘军, 甄平. 人工关节置换术后假体无菌性松动的研究进展[J]. 中华关节外科杂志(电子版), 2020, 14(03): 346-351.
[4] 梁鹏, 牛舜. 人工关节置换术后假体无菌性松动的早期诊断[J]. 中华关节外科杂志(电子版), 2019, 13(01): 99-104.
[5] 姜晨轶, 符培亮, 李晓华. 人工髋关节股骨头-颈锥度侵蚀研究[J]. 中华关节外科杂志(电子版), 2018, 12(05): 692-699.
[6] 葛于伟, 朱振安, 毛远青. 成骨与破骨细胞促红细胞生成素肝细胞受体B4/肝配蛋白B2双向信号通路[J]. 中华关节外科杂志(电子版), 2018, 12(03): 401-404.
[7] 林伟斌, 朱聪, 洪海森, 黄国锋, 高明明, 吴进, 沙漠, 林灿斌, 陈娜娜, 张晓旭, 丁真奇. 体外周期性压应力对兔胫骨骨折愈合过程成骨与破骨细胞增殖分化能力的影响[J]. 中华损伤与修复杂志(电子版), 2021, 16(04): 289-300.
[8] 郑慧敏, 夏贤友, 刘梦, 姚晓雨, 隋磊. 整联蛋白在骨重建中的作用[J]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 124-128.
[9] 骆鋆攀, 卢嘉蕊, 权晶晶. 破骨细胞融合蛋白的研究进展[J]. 中华口腔医学研究杂志(电子版), 2020, 14(04): 207-213.
[10] 关梅亮, 沈宗杉, 高现灵, 林正梅. 牙髓干细胞对牙周炎中破骨细胞的作用[J]. 中华口腔医学研究杂志(电子版), 2018, 12(01): 1-7.
[11] 单臻, 李雯, 范远键, 林泽飞, 林颖, 王深明. miR-223通过IGF-1R及NFIA调控乳腺癌细胞及破骨细胞功能的研究[J]. 中华普通外科学文献(电子版), 2020, 14(06): 406-410.
[12] 王继荣, 暴一众, 唐颖, 吕晓玲, 杨舟鑫. 吴茱萸碱抑制破骨细胞分化延缓骨丢失的研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 86-92.
[13] 张禄锴, 马剑雄, 赵杰, 匡明杰, 卢斌, 王颖, 孙磊, 马信龙. 唑来膦酸抑制RAW264.7细胞系分化的最佳浓度体外实验[J]. 中华老年骨科与康复电子杂志, 2018, 04(01): 4-8.
阅读次数
全文


摘要