[1] |
Teitelbaum SL. Bone remodeling and the osteoclast[J]. J Bone Mineral Res,1993, 8 (Suppl 2): S523-525.
|
[2] |
Roodman GD. Advances in bone biology: the osteoclast[J]. Endocr Rev, 1996, 17(4): 308-332.
|
[3] |
Sun Y, Li J, Xie X, et al. Macrophage-osteoclast associations: origin, polarization, and subgroups[J/OL]. Front Immunol, 2021, 12:778078. DOI: 10.3389/fimmu.2021.778078.
|
[4] |
Bae S, Kim K, Kang K, et al. RANKL-responsive epigenetic mechanism reprograms macrophages into bone-resorbing osteoclasts[J]. Cell Mol Immunol, 2023, 20(1): 94-109.
|
[5] |
Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions[J]. J Dent Res, 2013, 92(10): 860-867.
|
[6] |
Blangy A, Bompard G, Guerit D, et al. The osteoclast cytoskeleton - current understanding and therapeutic perspectives for osteoporosis[J/OL]. J Cell Sci, 2020, 133(13): jcs244798. DOI: 10.1242/jcs.244798.
|
[7] |
Da W, Tao L, Zhu Y. The role of osteoclast energy metabolism in the occurrence and development of osteoporosis[J/OL]. Front Endocrinol, 2021, 12: 675385. DOI: 10.3389/fendo.2021.675385.
|
[8] |
Ji WK, Chakrabarti R, Fan X, et al. Receptor-mediated Drp1 oligomerization on endoplasmic reticulum[J]. J Cell Biol, 2017, 216(12): 4123-4139.
|
[9] |
Mishra P, Chan DC. Metabolic regulation of mitochondrial dynamics[J]. J Cell Biol, 2016, 212(4): 379-387.
|
[10] |
Quintana-Cabrera R, Scorrano L. Determinants and outcomes of mitochondrial dynamics[J]. Mol Cell, 2023, 83(6): 857-876.
|
[11] |
Kocsis á,Pasztorek M, Rossmanith E, et al. Dependence of mitochondrial function on the filamentous actin cytoskeleton in cultured mesenchymal stem cells treated with cytochalasin B[J]. J Biosci Bioeng, 2021, 132(3): 310-320.
|
[12] |
Osellame LD, Singh AP, Stroud DA, et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission[J]. J Cell Sci, 2016, 129(11): 2170-2181.
|
[13] |
Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function[J]. Annu Rev Physiol, 2016, 78: 505-531.
|
[14] |
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 333. DOI: 10.1038/s41392-023-01547-9.
|
[15] |
Chan DC. Fusion and fission: interlinked processes critical for mitochondrial health[J]. Annu Rev Genet, 2012, 46: 265-287.
|
[16] |
Yan C, Shi Y, Yuan L, et al. Mitochondrial quality control and its role in osteoporosis[J/OL]. Front Endocrinol, 2023, 14: 1077058. DOI: 10.3389/fendo.2023.1077058.
|
[17] |
Suh J, Kim NK, Shim W, et al. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis[J]. Cell Metab, 2023, 35(2): 345-360.e7.
|
[18] |
Ballard A, Zeng R, Zarei A, et al. The tethering function of mitofusin2 controls osteoclast differentiation by modulating the Ca2+-NFATc1 axis[J]. J Biol Chem, 2020, 295(19): 6629-6640.
|
[19] |
Jeong S, Seong JH, Kang JH, et al. Dynamin-related protein 1 positively regulates osteoclast differentiation and bone loss[J]. FEBS Lett, 2021, 595(1): 58-67.
|
[20] |
Tábara LC, Morris JL, Prudent J. The complex dance of organelles during mitochondrial division[J]. Trends Cell Biol, 2021, 31(4): 241-253.
|
[21] |
Dudley HR, Spiro D. The fine structure of bone cells[J]. J Biophys Biochem Cytol, 1961, 11(3): 627-649.
|
[22] |
Park-Min KH. Metabolic reprogramming in osteoclasts[J]. Semin Immunopathol, 2019, 41(5): 565-572.
|
[23] |
Ledesma-Colunga MG, Passin V, Lademann F, et al. Novel insights into osteoclast energy metabolism[J]. Curr Osteoporos Rep, 2023, 21(6): 660-669.
|
[24] |
Martínez J, Marmisolle I, Tarallo D, et al. Mitochondrial bioenergetics and dynamics in secretion processes[J/OL]. Front Endocrinol, 2020, 11: 319. DOI: 10.3389/fendo.2020.00319.
|
[25] |
Fan X, Hussien R, Brooks GA.H2O2-induced mitochondrial fragmentation in C2C12 myocytes[J]. Free Radic Biol Med, 2010, 49(11): 1646-1654.
|
[26] |
万超超,曹林忠,王多贤,等. 微管调控成骨细胞功能的研究进展[J]. 中国骨质疏松杂志,2022, 28(9): 1360-1364.
|
[27] |
Forni MF, Peloggia J, Trudeau K, et al. Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics[J]. Stem Cells, 2016, 34(3): 743-755.
|
[28] |
Zhang L, Gan X, He Y, et al. Drp1-dependent mitochondrial fission mediates osteogenic dysfunction in inflammation through elevated production of reactive oxygen species[J/OL]. PLoS One, 2017, 12(4): e0175262. DOI: 10.1371/journal.pone.0175262.
|
[29] |
Rosdah AA, K Holien J, Delbridge LM, et al. Mitochondrial fission-a drug target for cytoprotection or cytodestruction?[J/OL]. Pharmacol Res Perspect, 2016, 4(3): e00235. DOI: 10.1002/prp2.235.
|
[30] |
Gan X, Huang S, Yu Q, et al. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction[J]. Biochem Biophys Res Commun, 2015, 468(4): 719-725.
|
[31] |
Schmitt K, Grimm A, Dallmann R, et al. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics[J]. Cell Metab, 2018, 27(3): 657-666.e5.
|
[32] |
Wang Y, Lu M, Xiong L, et al. Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis[J/OL]. Cell Death Dis, 2020, 11(1): 29. DOI: 10.1038/s41419-019-2218-5.
|