切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (01) : 63 -67. doi: 10.3877/cma.j.issn.1674-134X.2020.01.011

所属专题: 文献

基础论著

高分子修饰细菌纤维素细胞相容性的初步研究
黄弘轩1, 白波1, 赖琛2, 王瑛3, 陈艺1, 张姝江1,()   
  1. 1. 510120 广州医科大学附属第一医院关节外科,广东省矫形外科技术与植入材料重点实验室
    2. 518067 北京大学深圳研究院
    3. 510120 广州医科大学附属第一医院超声科
  • 收稿日期:2018-05-13 出版日期:2020-02-01
  • 通信作者: 张姝江
  • 基金资助:
    广州市科技计划项目(201904010174); 广东省自然科学基金(2020A151501694)

Primary research on biocompatibility of poly lactic acid modified bacterial cellulose

Hongxuan Huang1, Bo Bai1, Chen Lai2, Ying Wang3, Yi Chen1, Shujiang Zhang1,()   

  1. 1. Joint Surgery Department of the First Affiliated Hospital of Guangzhou Medical College, Guangdong Key Laboratory of Orthopedic Technology and Implanted Materials, Guangzhou 510120, China
    2. Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen 518067, China
    3. Ultrasound Department of the First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120, China
  • Received:2018-05-13 Published:2020-02-01
  • Corresponding author: Shujiang Zhang
  • About author:
    Corresponding author: Zhang Shujiang, Email:
引用本文:

黄弘轩, 白波, 赖琛, 王瑛, 陈艺, 张姝江. 高分子修饰细菌纤维素细胞相容性的初步研究[J]. 中华关节外科杂志(电子版), 2020, 14(01): 63-67.

Hongxuan Huang, Bo Bai, Chen Lai, Ying Wang, Yi Chen, Shujiang Zhang. Primary research on biocompatibility of poly lactic acid modified bacterial cellulose[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(01): 63-67.

目的

筛选适于平滑肌细胞附着生长的聚乳酸-共-聚乙醇酸(PLGA)修饰的细菌纤维素材料。

方法

不同比例PLGA修饰的细菌纤维素材料分为5组:单纯PLGA材料(50P组);经PLGA修饰的细菌纤维素材料组则包括聚乳酸(PLA) ∶聚乙醇酸(PGA)=50 ∶50的50PB组、PLA ∶PGA=75 ∶25的75PB组和PLA ∶PGA=90 ∶10的90PB组;单纯细菌纤维素为空白对照组。将平滑肌细胞接种于不同组别的材料上培养7 d,扫描电镜观察细胞的生长状态,并用荧光染色计数活/死细胞,CCK8法测定材料上的细胞增殖情况并绘制增殖曲线。不同材料上细胞数量及增殖数据用单因素方差分析比较、两两比较用SNK检验。

结果

接种后第3天的扫描电镜可见细胞均能在各组材料上成功附着并生长,但75PB组和空白对照组细胞生长形态较差。活/死细胞染色结果显示,平滑肌细胞可以在各组材料中均匀的分布以及生长,活细胞计数各组差异无统计学意义(F=1.454,P>0.05)。细胞生长曲线检测显示,接种后3 d及5 d,平滑肌细胞在各组材料上的增殖量差异无统计学意义(3 d F=1.672,P>0.05; 5 d F=1.19,P>0.05);接种后7 d, 50PB组和空白对照组的平滑肌细胞增殖优于90PB组及75PB组(F=13.328,P<0.01)。

结论

PLA/PGA比例为50 ∶50的PLGA修饰细菌纤维素后的材料细胞相容性更优,可以成为用于组织修复的生物材料。

Objective

To investigate the biocompatibility of poly lactic-co-glycolic acid (PLGA)modified bacterial cellulose using smooth muscle cells.

Methods

Different proportions of PLGA modified bacterial cellulose were divided into five groups: the pure PLGA group (the 50P group), bacterial cellulose modified by PLA ∶PGA=50 ∶50 as the 50PB group, bacterial cellulose with poly-lactic acid(PLA) ∶poly-glycolic acid(PGA)=75 ∶25 as the 75PB group and bacterial cellulose with PLA ∶PGA=90 ∶10 as the 90PB group; the pure bacterial cellulose as the control group. The smooth muscle cells were seeded to different kinds of materials and cultured for 7 d. The situation of smooth muscle cells on different materials was observed by electronic migroscope(SEM)and determined by live/dead staining. The cell proliferation on the materials was determined by cell counting kit-8(CCK-8) test. The data of cell survival rate and proliferation rate were analyzed by one-way ANOVA and SNK test.

Results

The smooth muscle cells in all the groups adhered well to the materials on the 3rd day according to SEM observation. The live/dead staining result showed that smooth muscle cells of all the groups distributed uniformly and grow flourishly(F=1.454, P>0.05). The CCK-8 data indicated that the growth of smooth muscle cells in different groups had no difference on the 3rd day and 5th day(3 d F=1.672, P>0.05; 5 d F=1.19, P>0.05). On the 7th day the cells both in the 50PB group and the control group showed superior proliferation to those in the 90PB group and the 75PB group(F=13.328, P<0.01).

Conclusion

The biocompatibility of PLGA (PLA ∶PGA=50 ∶50) modified bacterial cellulose is better than other PLGA proportion modified bacterial cellulose, which is potential biomaterial for tissue repair.

图1 扫描电子显微镜观察平滑肌细胞接种在不同材料表面第3天的生长情况,示平滑肌细胞在材料表面伸展伪足,与材料贴附紧密。图A为50P组(单纯聚乳酸-聚乙醇酸材料);图B为50PB组[PLA(聚乳酸) ∶PGA(聚乙醇酸)=50 ∶50涂层细菌纤维素];图C为75PB组(PLA ∶PGA=75 ∶25涂层细菌纤维素);图D为90PB组(PLA ∶PGA=90 ∶510涂层细菌纤维素);图E为空白对照组(单纯细菌纤维素)
图2 平滑肌细胞在5组材料上接种3 d后活/死细胞荧光染色,×100,示代表活细胞的绿色荧光均匀分布,未见明显死细胞的红色荧光。图A为50P组(单纯聚乳酸-聚乙醇酸材料);图B为50BP组[PLA(聚乳酸) ∶PGA(聚乙醇酸)=50 ∶50的细菌纤维素]组;图C为75PB组(PLA ∶PGA=75 ∶25的细菌纤维素);图D为90PB(PLA ∶PGA=90 ∶10的细菌纤维素)组;图E为空白对照组(单纯细菌纤维素)
图3 各组材料上平滑肌细胞生长曲线;50P组(单纯聚乳酸-聚乙醇酸材料); 50PB组[PLA(聚乳酸) ∶PGA(聚乙醇酸)=50 ∶50涂层细菌纤维素]; 75PB组(PLA ∶PGA=75 ∶25涂层细菌纤维素); 90PB组(PLA ∶PGA=90 ∶510涂层细菌纤维素);空白组(单纯细菌纤维素)
表1 平滑肌细胞在不同材料培养的吸光度值(±s)
[1]
Adhikari AR,Geranpayeh T, Chu WK, et al. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells[J]. Mater Sci Eng C Mater Biol Appl, 2016,60:151-155.
[2]
Rajwade JM, Paknikar KM, Kumbhar JV, et al, Applications of bacterial cellulose and its composites in biomedicine[J]. Appl Microbiol Biotechnol, 2015,99(6):2491-2511.
[3]
董丽攀,李政,夏文,等.细菌纤维素复合材料的研究新进展[J]. 材料科学与工艺,2018, 26(1):88-96.
[4]
Lai C, Zhang SJ, Wang LQ,et al. The relationship between microstructure and in vivo degradation of modified bacterial cellulose sponges [J]. J Mater Chem B, 2015, 3(46):9001-9010.
[5]
Pértile RA, Moreira S, Gil da Costa RM,et al. Bacterial cellulose: long-term biocompatibility studies[J]. Biomater Sci Polym Ed,2012,23(10):1339-1354
[6]
Czaja WK, Young DJ, Kawecki M, et al. The future prospects of microbial cellulose in biomedical applications[J]. Biomacromolecules,2007,8(1):1-12.
[7]
Lee SG, An EY, Lee JB, et al. Enhanced cell affinity of poly(d,l-lactic-co-glycolic acid) (50/50) by plasma treatment with β-(1→3) (1→6)-glucan[J]. Surf Coat Tech,2007,201(9-11):5128-5131
[8]
Kim H,Park S,Kim DJ,et al. New coating method for sustained drug release: surface modification of ePTFE grafts by inner coating PLGA [J]. Bull Korean Chem Soc,35(5):1333-1336.
[9]
Luo H, Xiong G, Huang Y, et al. Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds[J]. Mater Chemist Physic, 110(2-3):193-196.
[10]
Maneerung T, Tokura S, Rujiravanit R, et al.Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing[J]. Carbohydr Polym, 72(1), 43-51.
[11]
孟洁,宋礼,孔桦,等. 细胞在单壁碳纳米管无纺膜支架上的生长行为 [J]. 高等学校化学学报,2007, 28(3):476-480.
[12]
Lai C, Zhang S, Chen X, et al. Nanocomposite films based on TEMPO-mediated oxidized bacterial cellulose and chitosan[J]. Cellulose,2014,21:2757-2772.
[13]
Favi PM, Ospina SP, Kachole M,et al. Preparation and characterization of biodegradable nano hydroxyapatite-bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications[J]. Cellulose, 2016, 23(2):1263-1282.
[14]
Andrade FK, Moreira SMG, Domingues L, et al. Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD[J]. J Biomed Mater Res A,2010,92(1):9-17.
[15]
Bäckdahl H, Esguerra M, Delbro D, et al. Engineering microporosity in bacterial cellulose scaffolds[J]. J Tissue Eng Regen Med, 2008, 2(6): 320-330.
[16]
Yang J, Lv X, Chen S,et al. In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility [J]. Cellulose, 2014,21:1823-1835.
[17]
Foresti ML, Vázquez A, Boury B,et al.Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances[J].Carbohydr Polym,2017,157:447-467.
[18]
Qiao H,Guo T,Zheng Y,et al. A novel microporous oxidized bacterial cellulose/arginine composite andits effect on behavior of fibroblast/endothelial cell [J]. Carbohydr Polym, 2018, 184:323-332.
[19]
Luo Y, Lode A, Akkineni AR, et al. Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting [J]. RSC Adv, 2015, 5 (54):43480-43488.
[20]
Khan S, Ul-Islam M, Ikram M, et al. Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: a potential material for skin regeneration applications in vitro and in vivo[J]. Int J Biol Macromol,2018,117:1200-1210.
[21]
Aydogdu MO, Altun E, Crabbe-Mann M, et al. Cellular interactions with bacterial cellulose: polycaprolactone nanofibrous scaffolds produced by a portable electrohydrodynamic gun for point-of-need wound dressing[J]. Int Wound J,2018, 15(5):789-797.
[1] 郑妩妩, 朱剑, 鲁爱慧, 陈丽霞. 肿瘤体积倍增时间在鉴别子宫肉瘤与富于细胞型平滑肌瘤中的作用[J]. 中华医学超声杂志(电子版), 2023, 20(01): 35-40.
[2] 邹旻红, 林伟珍, 黄庆, 蒋叶, 张娈景, 郑荣琴. 肝细胞腺瘤的临床及超声特点分析[J]. 中华医学超声杂志(电子版), 2022, 19(11): 1225-1231.
[3] 周梦玲, 薛志伟, 周淑. 妊娠合并子宫肌瘤的孕期变化及其与不良妊娠结局的关系[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 611-615.
[4] 李敏, 杨凡. 肌细胞因子在儿童肥胖症患儿运动减脂中的作用研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 125-131.
[5] 鲍亚慧, 曹志斌, 王健楠, 别瑶, 孙晓东, 惠宗光. 应用羧甲基纤维素钠银敷料联合封闭负压吸引治疗糖尿病足溃疡的疗效[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 326-330.
[6] 鲁文汇, 张俊隆, 陈凌武, 丘少鹏, 陈炜, 罗俊航, 陈旭, 陈羽. 机器人辅助和普通腹腔镜肾部分切除术治疗肾血管平滑肌脂肪瘤的比较[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(04): 306-310.
[7] 黄杰, 夏瑜, 姜艳娇, 刘云. GPR146经P-JNK通路对肺动脉高压小鼠血管重塑的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 460-465.
[8] 任成山, 卞士柱, 胡明冬. 肺动脉高压的成因及治疗新理念[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 1-5.
[9] 武玉康, 康九红. 多能干细胞在心脏发育和疾病研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 378-382.
[10] 田鹏飞, 王丽娟, 肖圣超. 黄芪总黄酮通过调控miR-190a-5p对缺氧/复氧诱导的心肌细胞损伤的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 346-352.
[11] 姜垠昊, 杨秭莹, 沈晗, 沈振亚. 干细胞心肌分化调控过程中的非编码RNA[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 300-308.
[12] 柯敏霞, 杨黄恬. 心肌微组织的构建及其在心肌损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 224-229.
[13] 于雁宾, 党受琴, 庄云龙, 许世友, 孟令展, 俞鹏, 高远, 李虎, 曹李, 朱震宇. 35例肝血管平滑肌脂肪瘤患者诊治及疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 327-330.
[14] 夏庆玲, 欧三桃. 成纤维细胞生长因子21与血管钙化关系研究进展[J]. 中华肾病研究电子杂志, 2022, 11(04): 231-234.
[15] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
阅读次数
全文


摘要