[1] |
Thomas AC, Hubbard-Turner T, Wikstrom EA, et al. Epidemiology of posttraumatic osteoarthritis [J]. J Athl Train, 2017, 52(6): 491-496.
|
[2] |
Flemming DJ, Gustas-French CN. Rapidly Progressive osteoarthritis: a review of the clinical and radiologic presentation. [J].Curr Rheumatol Rep, 2017, 19(7):42-47.
|
[3] |
Stampella A, Monteagudo S, Lories R. Wnt signaling as target for the treatment of osteoarthritis [J].Best Pract Res Clin Rheumatol, 2017, 31(5):721-729.
|
[4] |
Litwic A, Edwards MH, Dennison EM, et al. Epidemiology and burden of osteoarthritis[J]. Br Med Bull, 2013, 105(1): 185-199.
|
[5] |
Pereira D, Ramos E, Branco J. Osteoarthritis [J]. Acta Med Port, 2015, 28(1):99-106.
|
[6] |
Jiang YZ, Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis [J]. Nat Rev Rheumatol, 2015, 11(4): 206-212.
|
[7] |
Folkesson E, Turkiewicz A, Englund MA. Differential protein expression in human knee articular cartilage and medial meniscus using two different proteomic methods: a pilot analysis[J]. BMC Musculoskelet Disord, 2018, 19(1): 416-425.
|
[8] |
Szmigielska P, Brzeziańska-Lasota E. Genetic and epigenetic interactions in the etiopathogenesis of osteoarthritis. Selected molecular factors in OA etiopathogenesis[J]. Ortop Traumatol Rehabil, 2017, 19(3): 227-237.
|
[9] |
Zengini E, Finan C, Wilkinson JM. The genetic epidemiological landscape of hip and knee osteoarthritis: where are we now and where are we going? [J]. J Rheumatol, 2016, 43(2): 260-266.
|
[10] |
Sobhan MR, Mehdinejad M, Jamaladini MH, et al. Association between aspartic acid repeat polymorphism of the asporin gene and risk of knee osteoarthritis: a systematic review and meta-analysis[J]. Acta Orthop Traumatol Turc, 2017, 51(5): 409-415.
|
[11] |
Zhao GL, Shi JS, Xia J. Analysis of the association between CDH2 gene polymorphism and osteoarthritis risk[J].Med Sci, 2018, 34(F1): 105-112.
|
[12] |
Inohara T, Manandhar P, Kosinski AS, et al. Association of Renin-Angiotensin inhibitor treatment with mortality and heart failure readmission in patients with transcatheter aortic valve replacement [J]. JAMA, 2018, 320(21): 2231-2241.
|
[13] |
Lee SJ, Kim DY, Yun J, et al. Angiotensin Ⅱ attenuates the bioactivities of human endothelial progenitor cells via downregulation of β2-Adrenergic receptor[J/OL]. Stem Cells Int, 2018: 7453161. doi: 10.1155/2018/7453161.
|
[14] |
Sharp IT, Polhemus DJ, Li Z, et al. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system[J]. J Am Coll Cardiol, 2018, 72(21): 2609-2621.
|
[15] |
Ramchand J, Rodrigues TS, Yudi MB. Further studies needed before using renin-angiotensin-aldosterone system blockade for atrial fibrillation prevention in hypertrophic cardiomyopathy[J]. Heart, 2018, 104(23): 1985-1985.
|
[16] |
Zhang Y, Somers KR, Becari C, et al. Comparative expression of renin-angiotensin pathway proteins in visceral versus subcutaneous fat[J/OL]. FASEB J, 2018, 9: 1370-1379. doi: 10.3389/fphys.2018.01370.
|
[17] |
Trigiani LJ, Royea J, Lacalle-Aurioles MA, et al. Pleiotropic benefits of the angiotensin receptor blocker candesartan in a mouse model of alzheimer disease[J]. Hypertension, 2018, 72(5): 1217-1226.
|
[18] |
Satou R, Penrose H, Navar LG. Inflammation as a regulator of the renin-angiotensin system and blood pressure[J]. Curr Hypertens Rep, 2018, 20(12):100.
|
[19] |
Simko F, Baka T, Poglitsch M, et al. Effect of ivabradine on a hypertensive heart and the renin-angiotensin-aldosterone system in L-NAME-induced hypertension[J/OL]. Int J Mol Sci, 2018, 19(10): E3017. doi: 10.3390/ijms19103017.
|
[20] |
Petek B, Villa-Lopez M, Loera-Valencia R, et al. Connecting the brain cholesterol and renin-angiotensin systems: potential role of statins and RAS-modifying medications in dementia[J]. J Intern Med, 2018, 284(6): 620-642.
|
[21] |
Yamagishi K, Tsukamoto I, Nakamura FA, et al. Activation of the renin-angiotensin system in mice aggravates mechanical loading-induced knee osteoarthritis[J]. Eur J Histochem, 2018, 62(3): 177-187.
|
[22] |
Yan KZ, Shen YX. Aliskiren has chondroprotective efficacy in a rat model of osteoarthritis through suppression of the local renin-angiotensin system[J]. Mol Med Rep, 2017, 16(4): 3965-3973.
|
[23] |
Tang Y, Hu X, Lu X. Captopril, an angiotensin-converting enzyme inhibitor, possesses chondroprotective efficacy in a rat model of osteoarthritis through suppression local renin-angiotensin system[J].Int J Clin Exp Med, 2015, 8(8):12584-12592.
|
[24] |
Zhang W, Zhang C, Luo CF, et al. Design, cyclization, and optimization of MMP13-TIMP1 interaction-derived self-inhibitory peptides against chondrocyte senescence in osteoarthritis[J]. Int J Biol Macromol, 2019, 121(1): 921-929.
|
[25] |
Baker M, Brook BS, Owen MR. Mathematical modelling of cytokines, MMPs and fibronectin fragments in osteoarthritic cartilage [J]. J Math Biol, 2017, 75(4):985-1024.
|
[26] |
Yang CY, Chanalaris A, Troeberg L. ADAMTS and ADAM metalloproteinases in osteoarthritis-looking beyond the 'usual suspects'[J]. Osteoarthritis, 2017, 25(7):1000-1009.
|
[27] |
Moritake A, Kawao N, Okada K, et al. Plasminogen activator inhibitor-1 is involved in interleukin-1β-induced matrix metalloproteinase expression in murine chondrocytes[J].Mod Rheumatol, 2018:1-5.
|
[28] |
Seccia TM, Caroccia B, Muiesan ML, et al. Atrial fibrillation and arterial hypertension: a common duet with dangerous consequences wherethe renin angiotensin-aldosterone system plays an important role[J]. Int J Cardiol, 2016,206:71-76.
|
[29] |
Johnson SA, Spurney RF. Twenty years after ACEIs and ARBs: emerging treatment strategies for diabetic nephropathy[J]. Am J Physiol Renal Physiol, 2015, 309(10): F807-F820.
|
[30] |
Peters J. Local renin-angiotensin systems in the adrenal gland [J]. Peptides, 2012, 34(2): 427-432.
|
[31] |
Haznedaroglu IC, Beyazit Y. Pathobiological aspects of the local bone marrow renin-angiotensin system: a review[J]. J Renin Angiotensin Aldosterone Syst, 2010, 11 (4):205-213.
|
[32] |
Romero CA, Orias M, Weir MR. Novel RAAS agonists and antagonists: clinical applications and controversies [J]. Nat Rev Endocrinol, 2015, 11 (4): 242-252.
|
[33] |
Leung PS. Local RAS [J]. Adv Exp Med Biol, 2010, 690: 69-87.
|
[34] |
Schweda F, Kurtz A. Regulation of renin release by local and systemic factors[J]. Rev Physiol Biochem Pharmacol, 2011, 161: 1-44.
|
[35] |
Haznedaroglu IC, Beyazit Y. Pathobiological aspects of the local bone marrow renin-angiotensin system: a review[J]. J Renin Angiotensin Aldosterone Syst, 2010, 11(4): 205-213.
|
[36] |
Yongtao Z, Kunzheng W, Jingjing Z, et al. Glucocorticoids activate the local renin-angiotensin system in bone: possible mechanism for glucocorticoid-induced osteoporosis [J]. Endocrine, 2014, 47(2): 598-608.
|
[37] |
Garcia P, Schwenzer S, Slotta JE, et al. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation-role of a local renin-angiotensin system[J]. Br J Pharmacol, 2010, 159 (8): 1672-1680.
|
[38] |
Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study [J]. J Hypertens, 2006, 24(3): 581-589.
|
[39] |
Brzozowski T. Role of renin-angiotensin system and metabolites of angiotensin in the mechanism of gastric mucosal protection[J]. Curr Opin Pharmacol, 2014, 19: 90-98.
|
[40] |
Johnston CI. Franz Volhard Lecture. Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control[J]. J Hypertens Suppl, 1992,10: S13-S26.
|
[41] |
Freire MB, van Dijk DJ, Erman A, et al. DNA polymorphisms in the ACE gene, serum ACE activity and the risk of nephropathy in insulin-dependent diabetes mellitus[J]. Nephrol Dial Transplant, 1998,13:2553-2558.
|
[42] |
Lu XM, Chen GJ, Yang Y, et al. Angiotensin-converting enzyme polymorphism affects outcome of local Chinese with acute lung injury[J]. Respir Med, 2011, 105(10): 1485-1490.
|
[43] |
Inanir A, Yigit S, Tural S, et al. MTHFR gene C677T mutation and ACE gene I/D polymorphism in Turkish patients with osteoarthritis[J]. Dis Markers, 2013, 34(1): 17-22.
|
[44] |
Qing Z, Ye JM. Association between ACE polymorphisms and osteoarthritis susceptibility [J]. Int J Clin Exp Pathol, 2015, 8(6): 7391-7396.
|
[45] |
Hong S, Yang H, Yoo MC, et al. Angiotensin converting enzyme gene polymorphism in korean patients with primary knee osteoarthritis [J]. Exp Mol Med, 2003, 35(3): 189-195.
|
[46] |
Shehab DK, Al-Jarallah KF, Alawadhi AM, et al. Prevalence of angiotensin-coverting enzyme gene insertion-deletion polymorphism in patients with primary knee osteoarthritis [J]. Clin Exp Rheumatol,2008, 26:305-310.
|
[47] |
Das UN. Is angiotensin-II an endogenous pro-inflammatory molecule[J]? Med Sci Monit, 2005,11(5):RA155-162.
|
[48] |
Ruiz-Ortega M, Lorenzo O, Rupérez M, et al. Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2)in vascular smooth muscle cells: molecular mechanisms [J]. Circ Res, 2000, 86(12): 1266-1272.
|
[49] |
Wakamatsu K, Nanki T, Miyasaka N. Effect of a small molecule inhibitor of nuclear factor-kappaB nuclear translocation in a murine model of arthritis and cultured human synovial cells [J]. Arthritis, 2005, 7(6): R1348-R1359.
|
[50] |
Bai S, Liu H, Chen KH. NF-kappaB-regulated expression of cellular FLIP protects rheumatoid arthritis synovial fibroblasts from tumor necrosis factor alpha-mediated apoptosis[J]. Arthritis, 2004, 50(12): 3844-3855.
|
[51] |
Bondeson J, Brennan F, Foxwell B, et al. Effective adenoviral transfer of Ikappa Balpha into human fibroblasts and chondrosarcoma cells reveals that the induction of matrix metalloproteinases and proinflammatory cytokines is nuclear factor-kappaB dependent[J]. J Rheumatol, 2000, 27(9):2078-2089.
|
[52] |
Pattacini L, Casali B, Boiardi L, et al. Angiotensin II protects fibroblast-like synoviocytes from apoptosis via the AT1-NF-kappa B pathway[J]. Rheumatology, 2007, 46(8): 1252-1257.
|
[53] |
Haznedaroğlu IC, Tuncer S, Gürsoy M. A local renin-angiotensin system in the bone marrow [J]. Med Hypotheses, 1996, 46(6): 507-510.
|
[54] |
Hagiwara H, Hiruma Y, Inoue A, et al. Deceleration by angiotensin II of the differentiation and bone formation of rat calvarial osteoblastic cells[J]. J Endocrinol, 1998, 156(3): 543-550.
|
[55] |
Hatton R, Stimpel M, Chambers TJ. Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro[J]. J Endocrinol, 1997,152:5-10.
|
[56] |
Shimizu H, Nakagami H, Osako MK, et al. Angiotensin II accelerates osteoporosis by activating osteoclasts [J]. FASEB J, 2008, 22(7): 2465-2475.
|
[57] |
Asaba Y, Ito M, Fumoto T, et al. Activation of renin-angiotensin system induces osteoporosis independently of hypertension [J]. J Bone Miner Res, 2009, 24(2): 241-250.
|
[58] |
Verdecchia P, Angeli F, Mazzotta G, et al. The renin angiotensin system in the development of cardiovascular disease: Role of aliskiren in risk reduction[J]. Vasc Health Risk Manag, 2008,4:971-981.
|
[59] |
Gradman AH, Kad R. Renin Inhibition in hypertension[J]. J Am Coll Cardiol, 2008,51:519-528.
|
[60] |
Zhang FY, Yang FJ, Yang JL, et al. Renin inhibition improves ovariectomy-induced osteoporosis of lumbar vertebra in mice[J]. Biol Pharm Bull, 2014, 37(12): 1994-1997.
|
[61] |
Mavrikakis ME, Vaiopoulos G, Papantoniou B, et al. Plasma renin activity as a marker of renovascular injury in patients with rheumatoid arthritis[J]. Clin Exp Rheumatol, 1996,14(6): 613-617.
|
[62] |
Izai M, Miyazaki S, Murai R, et al. Prorenin-renin axis in synovial fluid in patients with rheumatoid arthritis and osteoarthritis[J]. Endocrinol Jpn, 1992,39:259-267.
|
[63] |
Cobankara V, Oztürk MA, Kiraz S, et al. Renin and angiotensin-converting enzyme (ACE) as active components of the local synovial renin-angiotensin system in rheumatoid arthritis[J]. Rheumatol Int, 2005, 25(4): 285-291.
|
[64] |
Huang HY, Zhou J, Cui ZL, et al. Angiotensin II type 1 receptor-associated protein plays a role in regulating the local renin-angiotensin system in HSC-T6 cells [J]. Mol Med Rep, 2015, 12(3): 3763-3768.
|
[65] |
Karnik SS, Unal H, Kemp JR, et al. International union of basic and clinical pharmacology. XCIX. angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli[J]. Pharmacol Rev, 2015, 67(4): 754-819.
|
[66] |
Walsh DA, Suzuki T, Knock GA, et al. AT1 receptor characteristics of angiotensin analogue binding in human synovium[J]. Br J Pharmacol, 1994, 112:435-442.
|
[67] |
Terenzi R, Manetti M, Rosa I, et al. Angiotensin II type 2 receptor (AT2R) as a novel modulator of inflammation in rheumatoid arthritis synovium[J/OL]. Sci Rep, 2017, 7(1): 13293. doi: 10.1038/s41598-017-13746-w.
|
[68] |
Steckelings UM, Kaschina E, Unger T. The AT2 receptor-a matter of love and hate[J]. Peptides, 2005, 26(8): 1401-1409.
|
[69] |
Tsutsumi Y, Matsubara H, Ohkubo N, et al. Angiotensin II type 2 receptor is upregulated in human heart with interstitial fibrosis,and cardiacfibroblasts are the major cell type for its expression[J]. Circ Res, 1998, 83(10): 1035-1046.
|
[70] |
Yang Z, Bove CM, French BA, et al. Angiotensin II type 2 receptor overexpression preserves left ventricular function after myocardialinfarction[J]. Circulation, 2002, 106(1): 106-111.
|
[71] |
Kawakami Y, Matsuo K, Murata M, et al. Expression of angiotensin II receptor-1 in human articular chondrocytes[J/OL]. Arthritis, 2012,(2012):648537. doi: 10.1155/2012/648537.
|
[72] |
Tsukamoto I, Inoue S, Teramura T, et al. Activating types 1 and 2 angiotensin II receptors modulate the hypertrophic differentiation of chondrocytes [J]. FEBS Open Bio, 2013, 3(7): 279-284.
|
[73] |
Tsukamoto I, Akagi M, Inoue S, et al. Expressions of local renin-angiotensin system components in chondrocytes[J]. Eur J Histochem, 2014, 58(2): 2387.
|