| [1] |
Liu W, Bai J. Meta-analysis of the quantitative assessment of lower extremity motor function in elderly individuals based on objective detection[J/OL]. J Neuroeng Rehabil, 2024, 21(1): 111. DOI: 10.1186/s12984-024-01409-7.
|
| [2] |
Sethi D, Bharti S, Prakash C. A comprehensive survey on gait analysis: History, parameters, approaches, pose estimation, and future work[J/OL]. Artif Intell Med, 2022, 129: 102314. DOI: 10.1016/j.artmed.2022.102314.
|
| [3] |
Prasanth H, Caban M, Keller U, et al. Wearable sensor-based real-time gait detection: a systematic review[J/OL]. Sensors, 2021, 21(8): 2727. DOI: 10.3390/s21082727.
|
| [4] |
Stebbins J, Harrington M, Stewart C. Clinical gait analysis 1973–2023: Evaluating progress to guide the future[J/OL]. J Biomech, 2023, 160: 111827. DOI: 10.1016/j.jbiomech.2023.111827.
|
| [5] |
邓铬, 史世龙, 关至远, 等. 运动捕捉技术在步态分析中的研究进展[J]. 广州医药, 2024, 55(8): 826-835.
|
| [6] |
Katmah R, Al Shehhi A, Jelinek HF, et al. A systematic review of gait analysis in the context of multimodal sensing fusion and AI[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 4189-4202.
|
| [7] |
Qi X, Jie K, Chen J, et al. Post-THA gait training to improve pelvic obliquity and decrease leg length discrepancy in DDH patients: a retrospective study[J/OL]. J Int Med Res, 2020, 48(3): 0300060519898034. DOI: 10.1177/0300060519898034.
|
| [8] |
Bahl JS, Nelson MJ, Taylor M, et al. Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: a systematic review and meta-analysis[J]. Osteoarthr Cartil, 2018, 26(7): 847-863.
|
| [9] |
陈端勇, 李梦远, 杨育晖, 等. 人工全髋关节置换术后髋关节运动学变化特征研究[J]. 中国修复重建外科杂志, 2024, 38(07): 849-854.
|
| [10] |
Werner BC. Instability after total hip arthroplasty[J/OL]. World J Orthop, 2012, 3(8): 122. DOI: 10.5312/wjo.v3.i8.122.
|
| [11] |
Chamberlain R. Hip pain in adults: evaluation and differential diagnosis[J]. Am Fam Physician, 2021, 103(2): 81-89.
|
| [12] |
Bonab MAR, Sener S, Colak TK, et al. Spatiotemporal gait parameters and gait asymmetry in patients with lumbar disc herniation, treated with microdiscectomy: a prospective, observational study[J]. Neurospine, 2023, 20(3): 947-958.
|
| [13] |
Schleder JSEL, de Souza Ramello DC, Caron MD, et al. Análise biomecânica damarcha de pacientes com osteonecrose da cabeça do fêmur[J]. Rev Bras Ortop (Sao Paulo), 2023, 58(3): 500-506.
|
| [14] |
中国医师协会骨科医师分会骨循环与骨坏死专业委员会, 中华医学会骨科分会骨显微修复学组, 国际骨循环学会中国区. 中国成人股骨头坏死临床诊疗指南(2020)[J]. 中华骨科杂志, 2020, 40(20): 1365-1376.
|
| [15] |
Eggli S, Huckell CB, Ganz R. Bilateral total hip arthroplasty: one stage versus two stage procedure[J]. Clin Orthop Relat Res, 1996, 328: 108-118.
|
| [16] |
Shao H, Chen C-L, Maltenfort MG, et al. Bilateral total hip arthroplasty: 1-stage or 2-stage?a meta-analysis[J]. J Arthroplasty, 2017, 32(2): 689-695.
|
| [17] |
Caudron M, Detrembleur C, Van Cauter M. Is simultaneous bilateral total hip arthroplasty deleterious in a biomechanical point of view? A comparative gait analysis study[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 903. DOI: 10.1186/s12891-022-05856-y.
|
| [18] |
Yoo J-I, Cha YH, Kim K-J, et al. Gait analysis after total hip arthroplasty using direct anterior approach versus anterolateral approach: a systematic review and meta-analysis[J/OL]. BMC Musculoskelet Disord, 2019, 20(1): 63. DOI: 10.1186/s12891-019-2450-2.
|
| [19] |
Ulivi M, Orlandini L, Vitale JA, et al. Direct superior approach versus posterolateral approach in total hip arthroplasty: a randomized controlled trial on early outcomes on gait, risk of fall, clinical and self-reported measurements[J]. Acta Orthop, 2021, 92(3): 274-279.
|
| [20] |
刘长路, 马丽波, 刘晓民, 等. Meta分析评价长柄与短柄人工髋关节假体在置换治疗中的有效和安全性[J]. 中国组织工程研究, 2020, 24(3): 416-421.
|
| [21] |
包显超, 李明阳, 武立民, 等. Dorr C型股骨患者人工全髋关节置换术中短柄ABGⅡ假体与长柄Corail假体填充率、对线及稳定性比较[J]. 中国修复重建外科杂志, 2023, 37(06): 641-646.
|
| [22] |
Wiik AV, Aqil A, Al-Obaidi B, et al. The impact of reducing the femoral stem length in total hip arthroplasty during gait[J]. Arch Orthop Trauma Surg, 2021, 141(11): 1993-2000.
|
| [23] |
Stolarczyk A, Stolarczyk M, Oleksy Ł, et al. Analysis of biomechanical gait parameters in patients after total hip replacement operated via anterolateral approach depending on size of the femoral head implant: retrospective matched-cohort study[J]. Arch Orthop Trauma Surg, 2022, 142(12): 4015-4023.
|
| [24] |
Grip H, Nilsson KG, Häger CK, et al. Does the femoral head size in hip arthroplasty influence lower body movements during squats, gait and stair walking?a clinical pilot study based on wearable motion sensors[J/OL]. Sensors, 2019, 19(14): 3240. DOI: 10.3390/s19143240.
|
| [25] |
杨宜昕, 孙鸿涛, 卢瀚宇, 等. 全髋置换术中髋臼假体放置定位的研究进展[J/OL]. 中华关节外科杂志(电子版), 2022, 16(04): 450-455.
|
| [26] |
Patil S, Bergula A, Chen PC, et al. Polyethylene wear and acetabular component orientation[J]. J Bone Joint Surg Am, 2003, 85: 56-63.
|
| [27] |
Moissenet F, Beauseroy V, Gasparutto X, et al. Estimation of two wear factors for total hip arthroplasty: a simulation study based on musculoskeletal modelling[J/OL]. Clin Biomech, 2023, 107: 106035. DOI: 10.1016/j.clinbiomech.2023.106035.
|
| [28] |
Al-Hajjar M, Gremillard L, Begand S, et al. Combined wear and ageing of ceramic-on-ceramic bearings in total hip replacement under edge loading conditions[J]. J Mech Behav Biomed Mater, 2019, 98: 40-47.
|
| [29] |
Weber M, Suess F, Jerabek SA, et al. Kinematic pelvic tilt during gait alters functional cup position in total hip arthroplasty[J]. J Orthop Res, 2022, 40(4): 846-853.
|
| [30] |
Killen CJ, Murphy MP, Ralles SJ, et al. Characterising acetabular component orientation with pelvic motion during total hip arthroplasty[J]. Hip Int, 2021, 31(6): 743-750.
|
| [31] |
Fallahnezhad K, O’Rourke D, Bahl JS, et al. The role of muscle forces and gait cycle discretization when assessing acetabular cup primary stability: a finite element study[J/OL]. Comput Meth Programs Biomed, 2023, 230: 107351. DOI: 10.1016/j.cmpb.2023.107351.
|
| [32] |
Tanaka S, Kayamoto A, Terai C, et al. Preoperative sarcopenia severity and clinical outcomes after total hip arthroplasty[J/OL]. Nutrients, 2024, 16(13): 2085. DOI: 10.3390/nu16132085.
|
| [33] |
Gasparutto X, Gueugnon M, Laroche D, et al. Which functional tasks present the largest deficits for patients with total hip arthroplasty before and six months after surgery? A study of the timed up-and-go test phases[J/OL]. PLoS One, 2021, 16(9): e0255037. DOI: 10.1371/journal.pone.0255037.
|
| [34] |
Fary C, Cholewa J, Abshagen S, et al. Stepping beyond counts in recovery of total hip arthroplasty: a prospective study on passively collected gait metrics[J/OL]. Sensors, 2023, 23(14): 6538. DOI: 10.3390/s23146538.
|
| [35] |
Wu X, Zhang H, Cui H, etal. Surface electromyography and gait features in patients after anterior cruciate ligament reconstruction[J]. Orthop Surg, 2025, 17(1): 62-70.
|
| [36] |
Gabada R, Jawade S, Tikhile P. Proprioceptive neuromuscular facilitation (PNF)-integrated gait rehabilitation following total hip arthroplasty[J/OL]. Cureus, 2024: 16(4): e57854. DOI: 10.7759/cureus.57854.
|
| [37] |
Chen G, Yu D, Wang Y, et al. A prospective randomized controlled trial assessing the impact of preoperative combined with postoperative progressive resistance training on muscle strength, gait, balance and function in patients undergoing total hip arthroplasty[J]. Clin Interv Aging, 2024, 19: 745-760.
|
| [38] |
Scheidig A, Schütz B, Trinh TQ, et al. Robot-assisted gait self-training: assessing the level achieved[J/OL]. Sensors, 2021, 21(18): 6213. DOI: 10.3390/s21186213.
|
| [39] |
Harada T, Hamai S, Hara D, et al. Three-dimensional kinematics and kinetics of getting into and out of a car in patients after total hip arthroplasty[J]. Gait Posture, 2022, 98: 305-312.
|
| [40] |
Shibuya M, Nanri Y, Kamiya K, et al. The maximal gait speed is a simple and useful prognostic indicator for functional recovery after total hip arthroplasty[J/OL]. BMC Musculoskelet Disord, 2020, 21(1): 84. DOI: 10.1186/s12891-020-3093-z.
|
| [41] |
Biggs P, Holsgaard-Larsen A, Holt CA, et al. Gait function improvements, using Cardiff Classifier, are related to patient-reported function and pain following hip arthroplasty[J]. J Orthop Res, 2022, 40(5): 1182-1193.
|
| [42] |
Nojiri S, Kayamoto A, Terai C, et al. Preoperative hip abductor strength predicts discharge destination after total hip arthroplasty[J/OL]. Eur J Orthop Surg Traumatol, 2024, 35(1): 5. DOI: 10.1007/s00590-024-04119-x.
|
| [43] |
Micó-Amigo ME, Bonci T, Paraschiv-Ionescu A, et al. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium[J/OL]. J Neuro Engineering Rehabil, 2023, 20(1): 78. DOI: 10.1186/s12984-023-01198-5.
|
| [44] |
Cappozzo A, Della Croce U, Leardini A, et al. Human movement analysis using stereophotogrammetry[J]. Gait Posture, 2005, 21(2): 186-196.
|
| [45] |
Alijanpour E, Russell DM. Gait phase normalization resolves the problem of different phases being compared in gait cycle normalization[J/OL]. J Biomech, 2024, 173: 112253. DOI: 10.1016/j.jbiomech.2024.112253.
|
| [46] |
刘芳超, 周谋望, 李涛. 基于人工智能算法的步态分析在疾病临床诊疗中的应用进展[J]. 中国康复医学杂志, 2023, 38(6): 836-840.
|
| [47] |
Surmacz K, Redfern RE, Van Andel DC, et al. Machine learning model identifies patient gait speed throughout the episode of care, generating notifications for clinician evaluation[J]. Gait Posture, 2024, 114: 62-68.
|
| [48] |
Lee SY, Park SJ, Gim J-A, et al. Correlation between Harris hip score and gait analysis through artificial intelligence pose estimation in patients after total hip arthroplasty[J]. Asian J Surg, 2023, 46(12): 5438-5443.
|