切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 742 -748. doi: 10.3877/cma.j.issn.1674-134X.2025.06.014

综述

步态分析应用于全髋关节置换术的研究进展
雷顺一1, 闫谨2, 刘思遥1, 南飞1, 曲彦隆1,()   
  1. 1150000 哈尔滨医科大学附属第一医院骨科三科
    2014000 包头市第四医院创伤手足踝外科
  • 收稿日期:2025-02-11 出版日期:2025-12-01
  • 通信作者: 曲彦隆
  • 基金资助:
    黑龙江省自然科学基金资助项目(PL2024H045); 北京康盟慈善基金会(YXKY-HX2002)

Research progress of gait analysis applied in total hip arthroplasty

Shunyi Lei1, Jin Yan2, Siyao Liu1, Fei Nan1, Yanlong Qu1,()   

  1. 1Third Department of Orthopedics of the First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
    2Department of Trauma, Hand, Foot and Ankle Surgery, Baotou Fourth Hospital, Baotou 014000, China
  • Received:2025-02-11 Published:2025-12-01
  • Corresponding author: Yanlong Qu
引用本文:

雷顺一, 闫谨, 刘思遥, 南飞, 曲彦隆. 步态分析应用于全髋关节置换术的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(06): 742-748.

Shunyi Lei, Jin Yan, Siyao Liu, Fei Nan, Yanlong Qu. Research progress of gait analysis applied in total hip arthroplasty[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(06): 742-748.

步态分析作为融合动力学、运动学与生理学的多学科交叉技术,现已成为骨科领域重要的评估手段。全髋关节置换术(THA)作为终末期髋关节疾病的核心治疗方案,虽能有效改善关节功能,但手术时机选择、假体适配及术后康复仍存在精准评估难题。步态分析通过量化运动模式与力学参数,可为THA从术前规划到术后康复监测提供客观依据。本研究旨在系统探讨该技术在THA全周期管理中的应用价值,为构建精准化、个体化的诊疗体系提供参考,以期提升髋关节置换手术效果。

Gait analysis, a multidisciplinary technology integrating dynamics, kinematics, and physiology, has become an important assessment tool in the field of orthopedics. Total hip arthroplasty (THA) is a core treatment for end-stage hip joint diseases. Although it can effectively improve joint function, there are still challenges in accurately assessing the timing of surgery, prosthesis matching, and postoperative rehabilitation. Gait analysis can provide objective evidence for THA from preoperative planning to postoperative rehabilitation monitoring by quantifying movement patterns and mechanical parameters. This article aimed to systematically explore the application value of this technology in the entire cycle management of THA, to provide theoretical support for building a precise and individualized diagnosis and treatment system, and it might be of great clinical significance for improving the effect of hip joint replacement surgery.

图1 步态分析技术方法发展展望
Figure 1 Outlook on the development of gait analysis technical methods
[1]
Liu W, Bai J. Meta-analysis of the quantitative assessment of lower extremity motor function in elderly individuals based on objective detection[J/OL]. J Neuroeng Rehabil, 2024, 21(1): 111. DOI: 10.1186/s12984-024-01409-7.
[2]
Sethi D, Bharti S, Prakash C. A comprehensive survey on gait analysis: History, parameters, approaches, pose estimation, and future work[J/OL]. Artif Intell Med, 2022, 129: 102314. DOI: 10.1016/j.artmed.2022.102314.
[3]
Prasanth H, Caban M, Keller U, et al. Wearable sensor-based real-time gait detection: a systematic review[J/OL]. Sensors, 2021, 21(8): 2727. DOI: 10.3390/s21082727.
[4]
Stebbins J, Harrington M, Stewart C. Clinical gait analysis 1973–2023: Evaluating progress to guide the future[J/OL]. J Biomech, 2023, 160: 111827. DOI: 10.1016/j.jbiomech.2023.111827.
[5]
邓铬, 史世龙, 关至远, 等. 运动捕捉技术在步态分析中的研究进展[J]. 广州医药, 2024, 55(8): 826-835.
[6]
Katmah R, Al Shehhi A, Jelinek HF, et al. A systematic review of gait analysis in the context of multimodal sensing fusion and AI[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 4189-4202.
[7]
Qi X, Jie K, Chen J, et al. Post-THA gait training to improve pelvic obliquity and decrease leg length discrepancy in DDH patients: a retrospective study[J/OL]. J Int Med Res, 2020, 48(3): 0300060519898034. DOI: 10.1177/0300060519898034.
[8]
Bahl JS, Nelson MJ, Taylor M, et al. Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: a systematic review and meta-analysis[J]. Osteoarthr Cartil, 2018, 26(7): 847-863.
[9]
陈端勇, 李梦远, 杨育晖, 等. 人工全髋关节置换术后髋关节运动学变化特征研究[J]. 中国修复重建外科杂志, 2024, 38(07): 849-854.
[10]
Werner BC. Instability after total hip arthroplasty[J/OL]. World J Orthop, 2012, 3(8): 122. DOI: 10.5312/wjo.v3.i8.122.
[11]
Chamberlain R. Hip pain in adults: evaluation and differential diagnosis[J]. Am Fam Physician, 2021, 103(2): 81-89.
[12]
Bonab MAR, Sener S, Colak TK, et al. Spatiotemporal gait parameters and gait asymmetry in patients with lumbar disc herniation, treated with microdiscectomy: a prospective, observational study[J]. Neurospine, 2023, 20(3): 947-958.
[13]
Schleder JSEL, de Souza Ramello DC, Caron MD, et al. Análise biomecânica damarcha de pacientes com osteonecrose da cabeça do fêmur[J]. Rev Bras Ortop (Sao Paulo), 2023, 58(3): 500-506.
[14]
中国医师协会骨科医师分会骨循环与骨坏死专业委员会, 中华医学会骨科分会骨显微修复学组, 国际骨循环学会中国区. 中国成人股骨头坏死临床诊疗指南(2020)[J]. 中华骨科杂志, 2020, 40(20): 1365-1376.
[15]
Eggli S, Huckell CB, Ganz R. Bilateral total hip arthroplasty: one stage versus two stage procedure[J]. Clin Orthop Relat Res, 1996, 328: 108-118.
[16]
Shao H, Chen C-L, Maltenfort MG, et al. Bilateral total hip arthroplasty: 1-stage or 2-stage?a meta-analysis[J]. J Arthroplasty, 2017, 32(2): 689-695.
[17]
Caudron M, Detrembleur C, Van Cauter M. Is simultaneous bilateral total hip arthroplasty deleterious in a biomechanical point of view? A comparative gait analysis study[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 903. DOI: 10.1186/s12891-022-05856-y.
[18]
Yoo J-I, Cha YH, Kim K-J, et al. Gait analysis after total hip arthroplasty using direct anterior approach versus anterolateral approach: a systematic review and meta-analysis[J/OL]. BMC Musculoskelet Disord, 2019, 20(1): 63. DOI: 10.1186/s12891-019-2450-2.
[19]
Ulivi M, Orlandini L, Vitale JA, et al. Direct superior approach versus posterolateral approach in total hip arthroplasty: a randomized controlled trial on early outcomes on gait, risk of fall, clinical and self-reported measurements[J]. Acta Orthop, 2021, 92(3): 274-279.
[20]
刘长路, 马丽波, 刘晓民, 等. Meta分析评价长柄与短柄人工髋关节假体在置换治疗中的有效和安全性[J]. 中国组织工程研究, 2020, 24(3): 416-421.
[21]
包显超, 李明阳, 武立民, 等. Dorr C型股骨患者人工全髋关节置换术中短柄ABGⅡ假体与长柄Corail假体填充率、对线及稳定性比较[J]. 中国修复重建外科杂志, 2023, 37(06): 641-646.
[22]
Wiik AV, Aqil A, Al-Obaidi B, et al. The impact of reducing the femoral stem length in total hip arthroplasty during gait[J]. Arch Orthop Trauma Surg, 2021, 141(11): 1993-2000.
[23]
Stolarczyk A, Stolarczyk M, Oleksy Ł, et al. Analysis of biomechanical gait parameters in patients after total hip replacement operated via anterolateral approach depending on size of the femoral head implant: retrospective matched-cohort study[J]. Arch Orthop Trauma Surg, 2022, 142(12): 4015-4023.
[24]
Grip H, Nilsson KG, Häger CK, et al. Does the femoral head size in hip arthroplasty influence lower body movements during squats, gait and stair walking?a clinical pilot study based on wearable motion sensors[J/OL]. Sensors, 2019, 19(14): 3240. DOI: 10.3390/s19143240.
[25]
杨宜昕, 孙鸿涛, 卢瀚宇, 等. 全髋置换术中髋臼假体放置定位的研究进展[J/OL]. 中华关节外科杂志(电子版), 2022, 16(04): 450-455.
[26]
Patil S, Bergula A, Chen PC, et al. Polyethylene wear and acetabular component orientation[J]. J Bone Joint Surg Am, 2003, 85: 56-63.
[27]
Moissenet F, Beauseroy V, Gasparutto X, et al. Estimation of two wear factors for total hip arthroplasty: a simulation study based on musculoskeletal modelling[J/OL]. Clin Biomech, 2023, 107: 106035. DOI: 10.1016/j.clinbiomech.2023.106035.
[28]
Al-Hajjar M, Gremillard L, Begand S, et al. Combined wear and ageing of ceramic-on-ceramic bearings in total hip replacement under edge loading conditions[J]. J Mech Behav Biomed Mater, 2019, 98: 40-47.
[29]
Weber M, Suess F, Jerabek SA, et al. Kinematic pelvic tilt during gait alters functional cup position in total hip arthroplasty[J]. J Orthop Res, 2022, 40(4): 846-853.
[30]
Killen CJ, Murphy MP, Ralles SJ, et al. Characterising acetabular component orientation with pelvic motion during total hip arthroplasty[J]. Hip Int, 2021, 31(6): 743-750.
[31]
Fallahnezhad K, O’Rourke D, Bahl JS, et al. The role of muscle forces and gait cycle discretization when assessing acetabular cup primary stability: a finite element study[J/OL]. Comput Meth Programs Biomed, 2023, 230: 107351. DOI: 10.1016/j.cmpb.2023.107351.
[32]
Tanaka S, Kayamoto A, Terai C, et al. Preoperative sarcopenia severity and clinical outcomes after total hip arthroplasty[J/OL]. Nutrients, 2024, 16(13): 2085. DOI: 10.3390/nu16132085.
[33]
Gasparutto X, Gueugnon M, Laroche D, et al. Which functional tasks present the largest deficits for patients with total hip arthroplasty before and six months after surgery? A study of the timed up-and-go test phases[J/OL]. PLoS One, 2021, 16(9): e0255037. DOI: 10.1371/journal.pone.0255037.
[34]
Fary C, Cholewa J, Abshagen S, et al. Stepping beyond counts in recovery of total hip arthroplasty: a prospective study on passively collected gait metrics[J/OL]. Sensors, 2023, 23(14): 6538. DOI: 10.3390/s23146538.
[35]
Wu X, Zhang H, Cui H, etal. Surface electromyography and gait features in patients after anterior cruciate ligament reconstruction[J]. Orthop Surg, 2025, 17(1): 62-70.
[36]
Gabada R, Jawade S, Tikhile P. Proprioceptive neuromuscular facilitation (PNF)-integrated gait rehabilitation following total hip arthroplasty[J/OL]. Cureus, 2024: 16(4): e57854. DOI: 10.7759/cureus.57854.
[37]
Chen G, Yu D, Wang Y, et al. A prospective randomized controlled trial assessing the impact of preoperative combined with postoperative progressive resistance training on muscle strength, gait, balance and function in patients undergoing total hip arthroplasty[J]. Clin Interv Aging, 2024, 19: 745-760.
[38]
Scheidig A, Schütz B, Trinh TQ, et al. Robot-assisted gait self-training: assessing the level achieved[J/OL]. Sensors, 2021, 21(18): 6213. DOI: 10.3390/s21186213.
[39]
Harada T, Hamai S, Hara D, et al. Three-dimensional kinematics and kinetics of getting into and out of a car in patients after total hip arthroplasty[J]. Gait Posture, 2022, 98: 305-312.
[40]
Shibuya M, Nanri Y, Kamiya K, et al. The maximal gait speed is a simple and useful prognostic indicator for functional recovery after total hip arthroplasty[J/OL]. BMC Musculoskelet Disord, 2020, 21(1): 84. DOI: 10.1186/s12891-020-3093-z.
[41]
Biggs P, Holsgaard-Larsen A, Holt CA, et al. Gait function improvements, using Cardiff Classifier, are related to patient-reported function and pain following hip arthroplasty[J]. J Orthop Res, 2022, 40(5): 1182-1193.
[42]
Nojiri S, Kayamoto A, Terai C, et al. Preoperative hip abductor strength predicts discharge destination after total hip arthroplasty[J/OL]. Eur J Orthop Surg Traumatol, 2024, 35(1): 5. DOI: 10.1007/s00590-024-04119-x.
[43]
Micó-Amigo ME, Bonci T, Paraschiv-Ionescu A, et al. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium[J/OL]. J Neuro Engineering Rehabil, 2023, 20(1): 78. DOI: 10.1186/s12984-023-01198-5.
[44]
Cappozzo A, Della Croce U, Leardini A, et al. Human movement analysis using stereophotogrammetry[J]. Gait Posture, 2005, 21(2): 186-196.
[45]
Alijanpour E, Russell DM. Gait phase normalization resolves the problem of different phases being compared in gait cycle normalization[J/OL]. J Biomech, 2024, 173: 112253. DOI: 10.1016/j.jbiomech.2024.112253.
[46]
刘芳超, 周谋望, 李涛. 基于人工智能算法的步态分析在疾病临床诊疗中的应用进展[J]. 中国康复医学杂志, 2023, 38(6): 836-840.
[47]
Surmacz K, Redfern RE, Van Andel DC, et al. Machine learning model identifies patient gait speed throughout the episode of care, generating notifications for clinician evaluation[J]. Gait Posture, 2024, 114: 62-68.
[48]
Lee SY, Park SJ, Gim J-A, et al. Correlation between Harris hip score and gait analysis through artificial intelligence pose estimation in patients after total hip arthroplasty[J]. Asian J Surg, 2023, 46(12): 5438-5443.
[1] 邵帅铭, 闫峰. 大粗隆柄关节置换用于高龄股骨粗隆间不稳定型骨折[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 505-509.
[2] 张雨, 艾克热木·艾尔肯, 李强强, 蒋青, 陈东阳. 机器人辅助导航前入路全髋关节置换治疗重度髋关节脱位[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 267-274.
[3] 张建桂, 杨塍尧, 贾绍茂. 两种股骨柄假体对全髋关节置换术围手术期影响[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 275-282.
[4] 何懿杰, 钟国庆, 严渊, 谢珍艳, 蔡悦鹏, 林金鹏, 黄文汉, 李丽萍, 张余. 大学生运动相关下肢损伤与下坡行走的步态运动学关联[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 283-291.
[5] 姚舜禹, 樊沛, 张波, 祝杰生. 髋膝关节置换术10年趋势的卫生经济学单中心分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 143-150.
[6] 刘寻, 鄢庆林, 李福斌, 郭军. 超声引导髂筋膜阻滞复合全麻在老年髋置换术中的效果[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 109-115.
[7] 高志祥, 赵超, 姚凯, 于伟, 刘利娟, 贾乐, 孔向东, 肖聪. 两种止血药在全髋关节置换术围手术期的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 7-12.
[8] 皮颖, 张强, 黄志荣. 80 岁以上股骨颈骨折患者术后1 年死亡率的预测因素[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 13-20.
[9] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[10] 丁莹莹, 宋恺, 金姬延, 田华. 机器人辅助膝髋关节置换术后精细化临床护理[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 553-557.
[11] 曾倩, 徐朝阳, 张丽芳. 帕金森病步态分析的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 235-238.
[12] 吴章薇, 张通, 赵军, 周昊, 李冰洁. 脑卒中偏瘫患者连续步行中骨盆不对称活动的动态分析[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(05): 364-374.
[13] 毛程璐, 徐运. 脑小血管病与步态和平衡功能障碍相关性的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(04): 267-273.
[14] 刘万虎, 步玮, 董玉娟, 李文君, 贾亚南, 刘翠翠, 任慧玲. 脑小血管病患者步态障碍及认知障碍与神经影像学特征的相关性[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 198-206.
[15] 夏振西, 谢鸿阳, 夏翠俏, 张楠, 曹俊杰, 赵弘轶, 黄勇华. 脑小血管病患者体脂百分比与步态特征及跌倒的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 556-563.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?