| [1] |
Gross A, Suh A, Abdelmaksoud A, et al. 292 Long-term clinical outcomes and survival analysis of robotic-assisted versus conventional total knee arthroplasty: an 8-year propensity-matched cohort study[J]. Am J Med Sci, 2025, 369: S189-S190.
|
| [2] |
Niculescu V, Nistor-Cseppento DC, Tirla S, et al. A retrospective study on the incidence of periprosthetic fractures related to total hip arthroplasty and postoperative complications during hospitalization[J/OL]. Clin Pract, 2025, 15(3): 42. DOI: 10.3390/clinpract15030042.
|
| [3] |
Niculescu V, Dimitriu AL, Nistor-Cseppento DC, et al. Multicenter study of comorbidities in patients with periprosthetic fractures after total hip arthroplasty and their association with immediate postoperative complications[J/OL]. Clin Pract, 2025, 15(6): 110. DOI: 10.3390/clinpract15060110.
|
| [4] |
Lu F, Li C, Hu P, et al. Effects of personalized 3D-printed blocks in total knee arthroplasty and revision surgery for massive bone defects: a single-center retrospective study[J/OL]. J Int Med Res, 2025, 53(1): 03000605241308383. DOI: 10.1177/03000605241308383.
|
| [5] |
de Geofroy B, Fauchille T, Djian M, et al. Individualized total knee arthroplasty achieves better functional results than off-the-shelf implants in patients undergoing personalized coronal alignment[J]. Knee, 2025, 53: 228-235.
|
| [6] |
Carr AJ, Robertsson O, Graves S, et al. Knee replacement[J]. Lancet, 2012, 379(9823): 1331-1340.
|
| [7] |
Hirschmann MT, von Eisenhart-Rothe R, Graichen H, et al. AI may enable robots to make a clinical impact in total knee arthroplasty, where navigation has not![J/OL]. J Exp Orthop, 2024, 11(4): e70061. DOI: 10.1002/jeo2.70061.
|
| [8] |
Andriollo L, Picchi A, Iademarco G, et al. The role of artificial intelligence and emerging technologies in advancing total hip arthroplasty[J/OL]. J Pers Med, 2025, 15(1): 21. DOI: 10.3390/jpm15010021.
|
| [9] |
Lan Q, Li S, Zhang J, et al. Reliable prediction of implant size and axial alignment in AI-based 3D preoperative planning for total knee arthroplasty[J/OL]. Sci Rep, 2024, 14(1): 16971. DOI: 10.1038/s41598-024-67276-3.
|
| [10] |
Karthikeyan A, Priyakumar UD. Artificial intelligence: machine learning for chemical sciences[J/OL]. J Chem Sci, 2021, 134(1): 2. DOI: 10.1007/s12039-021-01995-2.
|
| [11] |
Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning[J/OL]. Transl Vis Sci Technol, 2020, 9(2): 14. DOI: 10.1167/tvst.9.2.14.
|
| [12] |
Sarker IH. Machine learning: algorithms, real-world applications and research directions[J/OL]. SN Comput Sci, 2021, 2(3): 160. DOI: 10.1007/s42979-021-00592-x.
|
| [13] |
Garland A, Bülow E, Lenguerrand E, et al. Prediction of 90-day mortality after total hip arthroplasty[J]. Bone Joint J, 2021, 103-B(3): 469-478.
|
| [14] |
Xie C, Ou S, Lin Z, et al. Prediction of 90-day local complications in patients after total knee arthroplasty: a nomogram with external validation[J/OL]. Orthop J Sports Med, 2022, 10(2): 23259671211073331. DOI: 10.1177/23259671211073331.
|
| [15] |
Johnson K, Orfanos A, Chen E, et al. Machine learning to predict length of stay following revision hip arthroplasty[J]. J Hip Surg, 2024, 8(2): 84-89.
|
| [16] |
Chong YY, Lau CML, Jiang T, et al. Predicting periprosthetic joint infection in primary total knee arthroplasty: a machine learning model integrating preoperative and perioperative risk factors[J/OL]. BMC Musculoskelet Disord, 2025, 26(1): 241. DOI: 10.1186/s12891-025-08296-6.
|
| [17] |
Cheng Z, Li J, Wu W, et al. Developing and validating a machine learning model to predict chronic pain following total knee arthroplasty[J]. Knee, 2025, 56: 52-65.
|
| [18] |
Buddhiraju A, Shimizu MR, Seo HH, et al. Generalizability of machine learning models predicting 30-day unplanned readmission after primary total knee arthroplasty using a nationally representative database[J]. Med Biol Eng Comput, 2024, 62(8): 2333-2341.
|
| [19] |
Hunter J, Soleymani F, Viktor H, et al. Using unsupervised machine learning to predict quality of life after total knee arthroplasty[J]. J Arthroplasty, 2024, 39(3): 677-682.
|
| [20] |
Baxter NB, Lin CH, Wallace BI, et al. Development of a machine learning model to predict the use of surgery in patients with rheumatoid arthritis[J]. Arthritis Care Res, 2024, 76(5): 636-643.
|
| [21] |
Chen TL, Buddhiraju A, Bacevich BM, et al. Predicting 30-day reoperation following primary total knee arthroplasty: machine learning model outperforms the ACS risk calculator[J]. Med Biol Eng Comput, 2025, 63(4): 1131-1141.
|
| [22] |
Lee DW, Han HS, Lee MC, et al. Prediction of postoperative gait speed change after bilateral primary total knee arthroplasty in female patients using a machine learning algorithm[J/OL]. Orthop Traumatol Surg Res, 2024, 110(7): 103842. DOI: 10.1016/j.otsr.2024.103842.
|
| [23] |
Kunze KN, Polce EM, Sadauskas AJ, et al. Development of machine learning algorithms to predict patient dissatisfaction after primary total knee arthroplasty[J]. J Arthroplasty, 2020, 35(11): 3117-3122.
|
| [24] |
Devana SK, Shah AA, Lee C, et al. A novel, potentially universal machine learning algorithm to predict complications in total knee arthroplasty[J]. Arthroplast Today, 2021, 10: 135-143.
|
| [25] |
Saiki Y, Kabata T, Ojima T, et al. Machine learning algorithm to predict worsening of flexion range of motion after total knee arthroplasty[J]. Arthroplast Today, 2022, 17: 66-73.
|
| [26] |
Klemt C, Cohen-Levy WB, Robinson MG, et al. Can machine learning models predict failure of revision total hip arthroplasty?[J]. Arch Orthop Trauma Surg, 2023, 143(6): 2805-2812.
|
| [27] |
Gabriel RA, Harjai B, Prasad RS, et al. Machine learning approach to predicting persistent opioid use following lower extremity joint arthroplasty[J]. Reg Anesth Pain Med, 2022, 47(5): 313-319.
|
| [28] |
Sniderman J, Stark RB, Schwartz CE, et al. Patient factors that matter in predicting hip arthroplasty outcomes: a machine-learning approach[J]. J Arthroplasty, 2021, 36(6): 2024-2032.
|
| [29] |
Zhang S, Chen JY, Pang HN, et al. Development and internal validation of machine learning algorithms to predict patient satisfaction after total hip arthroplasty[J/OL]. Arthroplasty, 2021, 3(1): 33. DOI: 10.1186/s42836-021-00087-3.
|
| [30] |
El-Othmani MM, Zalikha AK, Shah RP. Comparative analysis of the ability of machine learning models in predicting in-hospital postoperative outcomes after total hip arthroplasty[J]. J Am Acad Orthop Surg, 2022, 30(20): e1337-e1347.
|
| [31] |
Fujii J, Aoyama S, Tezuka T, et al. Prediction of change in pelvic tilt after total hip arthroplasty using machine learning[J]. J Arthroplasty, 2023, 38(10): 2009-2016. e3.
|
| [32] |
Manning DW, Edelstein AI, Alvi HM. Risk prediction tools for hip and knee arthroplasty[J]. J Am Acad Orthop Surg, 2016, 24(1): 19-27.
|
| [33] |
Bozic KJ, Rubash HE, Sculco TP, et al. An analysis of medicare payment policy for total joint arthroplasty[J]. J Arthroplasty, 2008, 23(6 Suppl 1): 133-138.
|
| [34] |
Connolly P, Coombs S, Schwarzkopf R. Mechanical complications after total knee arthroplasty[J]. Expert Rev Med Devices, 2023, 20(12): 1105-1117.
|
| [35] |
Evangelopoulos DS, Ahmad SS, Krismer AM, et al. Periprosthetic infection: major cause of early failure of primary and revision total knee arthroplasty[J]. J Knee Surg, 2019, 32(10): 941-946.
|
| [36] |
Meyer JA, Zhu M, Cavadino A, et al. Infection and periprosthetic fracture are the leading causes of failure after aseptic revision total knee arthroplasty[J]. Arch Orthop Trauma Surg, 2021, 141(8): 1373-1383.
|
| [37] |
Shohat N, Ludwick L, Sherman MB, et al. Using machine learning to predict venous thromboembolism and major bleeding events following total joint arthroplasty[J/OL]. Sci Rep, 2023, 13(1): 2197. DOI: 10.1038/s41598-022-26032-1.
|
| [38] |
Kremers HM, Sohn S, Kremers WK. Machine learning models for prediction of joint infections following hip replacement surgery[C]//2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). December 5-8, 2023, Istanbul, Turkiye. IEEE, 2024: 3053-3058.
|
| [39] |
Abraham VM, Booth G, Geiger P, et al. Machine-learning models predict 30-day mortality, cardiovascular complications, and respiratory complications after aseptic revision total joint arthroplasty[J]. Clin Orthop Relat Res, 2022, 480(11): 2137-2145.
|
| [40] |
D’Arrigo G, Gori M, Pitino A, etal. Statistical methods to assess the prognostic value of risk prediction rules in clinical research[J]. Aging Clin Exp Res, 2021, 33(2): 279-283.
|
| [41] |
Pua Y-H, Kang H, Thumboo J, et al. Machine learning methods are comparable to logistic regression techniques in predicting severe walking limitation following total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(10): 3207-3216.
|
| [42] |
Ayers DC, Yousef M, Yang W, et al. Age-related differences in pain, function, and quality of life following primary total knee arthroplasty: results from a FORCE-TJR (function and outcomes research for comparative effectiveness in total joint replacement) cohort[J]. J Arthroplasty, 2023, 38(7 Suppl 2): S169-S176.
|
| [43] |
Xu C, Guo H, Wang Q, et al. Interaction of obesity with smoking and inflammatory arthropathies increases the risk of periprosthetic joint infection: a propensity score matched study in a Chinese Han population[J]. J Hosp Infect, 2019, 101(2): 222-228.
|
| [44] |
Pua YH, Seah FJ, Seet FJ, et al. Sex differences and impact of body mass index on the time course of knee range of motion, knee strength, and gait speed after total knee arthroplasty[J]. Arthritis Care Res, 2015, 67(10): 1397-1405.
|
| [45] |
Fontana MA, Lyman S, Sarker GK, et al. Can machine learning algorithms predict which patients will achieve minimally clinically important differences from total joint arthroplasty?[J]. Clin Orthop Relat Res, 2019, 477(6): 1267-1279.
|
| [46] |
Qamar T, Bawany NZ. Understanding the black-box: towards interpretable and reliable deep learning models[J/OL]. PeerJ Comput Sci, 2023, 9: e1629. DOI: 10.7717/peerj-cs.1629.
|
| [47] |
Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J]. Nat Mach Intell, 2019, 1(5): 206-215.
|
| [48] |
Vela D, Sharp A, Zhang R, et al. Temporal quality degradation in AI models[J/OL]. Sci Rep, 2022, 12: 11654. DOI: 10.1038/s41598-022-15245-z.
|
| [49] |
张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J/OL]. 中华关节外科杂志(电子版), 2023, 17(6): 808-817.
|
| [50] |
Colyn W, Bruckers L, Scheys L, et al. Changes in coronal knee-alignment parameters during the osteoarthritis process in the Varus knee[J]. J ISAKOS, 2023, 8(2): 68-73.
|