切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (03) : 283 -291. doi: 10.3877/cma.j.issn.1674-134X.2025.03.004

临床论著

大学生运动相关下肢损伤与下坡行走的步态运动学关联
何懿杰1, 钟国庆1, 严渊1, 谢珍艳2, 蔡悦鹏2, 林金鹏1, 黄文汉1, 李丽萍2, 张余1,()   
  1. 1510080 广州,南方医科大学附属广东省人民医院(广东省医学科学院)骨肿瘤科
    2515041 汕头大学医学院
  • 收稿日期:2024-12-04 出版日期:2025-06-01
  • 通信作者: 张余
  • 基金资助:
    广东省重点领域研发计划(2024B0101080001); 广州市重点研发计划(2023B01J0022)

Association between sports-related lower extremity injuries and gait kinematics during down-slope walking in college students

Yijie He1, Guoqing Zhong1, Yuan Yan1, Zhenyan Xie2, Yuepeng Cai2, Jinpeng Lin1, Wenhan Huang1, Liping Li2, Yu Zhang1,()   

  1. 1Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
    2Shantou University Medical College, Shantou 515041, China
  • Received:2024-12-04 Published:2025-06-01
  • Corresponding author: Yu Zhang
引用本文:

何懿杰, 钟国庆, 严渊, 谢珍艳, 蔡悦鹏, 林金鹏, 黄文汉, 李丽萍, 张余. 大学生运动相关下肢损伤与下坡行走的步态运动学关联[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 283-291.

Yijie He, Guoqing Zhong, Yuan Yan, Zhenyan Xie, Yuepeng Cai, Jinpeng Lin, Wenhan Huang, Liping Li, Yu Zhang. Association between sports-related lower extremity injuries and gait kinematics during down-slope walking in college students[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(03): 283-291.

目的

前瞻性研究下坡行走的步态相关危险因素与运动相关下肢损伤的关系。

方法

纳入标准为健康的大学生,排除标准为1年内有下肢外伤或韧带损伤、手术史、神经肌肉疾病或影响运动表现及生活质量的疾病。收集研究对象的人口统计学资料和人体测量数据,利用三维步态分析系统获得在跑步机上下坡行走时膝关节6自由度(6DOF)运动学参数。18个月后,记录下肢损伤。采用独立样本t检验和Wilcoxon Mann-Whitney检验比较各变量差异,通过二元分析识别风险因素,并将P<0.05的变量纳入多因素logistic回归分析。

结果

共招募518名受试者,其中399人最终纳入本研究;男性190人,女性209人,年龄(20.3±3.7)岁,随访率为80.7%,共36例(9.0%)损伤。多因素logistic回归分析表明,损伤的受试者在下坡行走负重反应中表现出更显著的胫骨前平移(ATT)[比值比(OR)=2.563,95%置信区间(CI)(1.439,4.565)]。未损伤的受试者在下坡行走时表现出更显著的最大膝关节屈曲角(KFA)[OR=0.969,95%CI(0.953,1.014)]。

结论

较大的ATT可能是与步态相关的下肢损伤危险因素,而较大的KFA可能是保护因素。在下坡条件下评估的其他步态相关因素,特别是肌肉质量、性别和BMI在大学生中没有显示出显著的病因相关性。

Objective

To prospectively investigate gait-related risk factors associated with downslope walking concerning sport-related lower limb injuries.

Methods

The inclusion criteria comprised healthy college students, and the exclusion criteria were lower limb trauma or ligament injury in the last year, history of surgery, neuromuscular disorders, and conditions impairing athletic performance or quality of life. Demographics and anthropometric data of participants were collected, and a three-dimensional gait analysis system was employed to obtainsix degreeoffreedom (6 DOF) kinematic parameters of the knee during down-slope walking on a treadmill. Over 18 months, lower limb injuries were documented. Independent samples t tests and Wilcoxon Mann-Whitney tests were used to compare variable differences. Binary analysis identified risk factors, with variables showing P<0.05 included in multivariate logistic regression analysis.

Results

A total of 518 subjects were recruited, of whom 399 were ultimately included, including 190 males and 209 females, average age were (20.3±3.7) years, resulting in a follow-up rate of 80.7%. A total of 36 injuries (9.0%) were reported. Multivariate logistic regression analysis indicated that subjects who sustained injuries exhibited significantly greater anterior tibia translation (ATT) during the loading response [odds ratio (OR) =2.563, 95% confidence interval (CI) (1.439, 4.565)]while walking down-slope. The uninjured subjects exhibited a greater maximum knee flexion angle (KFA) during down-slope walking[OR=0.969, 95%CI (0.953, 1.014)].

Conclusions

Greater ATT may serve as a gait-related risk factor for lower limb injuries, whereas greater KFA may act as a protective factor. Other gait-related factors assessed under downs-lope conditions, especially muscle mass, gender, and BMI, do not demonstrate significant etiological relevance among college students.

图1 Optimum三维运动捕捉系统
Figure 1 Optimum 3D Motion Capture System
图2 下坡行走示意图
Figure 2 Downslope walking
图3 参与者的纳入和排除过程的流程图
Figure 3 Flowchart of participant recruitment and exclusion procedures
表1 人口统计学与人体测量特征
Table 1 Demographic and anthropometric characteristics
表2 6DOF膝关节运动学参数的平均旋转和平移ROM(±s
Table 2 Mean rotational and translational ROM for 6DOF knee joint kinematic parameters
表3 下坡行走关键事件的步态参数比较(±s
Table 3 Comparison of gait parameters for key events in down-slope walking
图4 两组患者在下坡时的膝关节6DOF(6自由度)运动学注:*-与未受伤的对照组相比,下坡行走时运动学参数差异有统计学意义(P<0.05)
Figure 4 Knee joint 6DOF(6 degree of freedom)kinematics in two groups during down-slope walkingNote: *-a statistically significant difference in kinematic parameters during down-slope walking compared to the uninjured group(P<0.05)
表4 多变量分析的参数估计
Table 4 Parameter estimates for multivariable analysis
[1]
Oswald F, Campbell J, Williamson C, et al. A scoping review of the relationship between running and mental health[J/OL]. Int J Environ Res Public Health, 2020, 17(21): E8059. DOI:10.3390/ijerph17218059.
[2]
Pate RR, Pratt M, Blair SN, et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine[J]. JAMA, 1995, 273(5): 402-407.
[3]
Sheu Y, Chen LH, Hedegaard H. Sports- and recreation-related injury episodes in the United States, 2011-2014[J]. Natl Health Stat Report, 2016(99): 1-12.
[4]
HootmanJM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives[J]. J Athl Train, 2007, 42(2): 311-319.
[5]
Darrow CJ, Collins CL, Yard EE, et al. Epidemiology of severe injuries among United States high school athletes: 2005-2007[J]. Am J Sports Med, 2009, 37(9): 1798-1805.
[6]
Doyle E, Doyle TLA, Bonacci J, et al. The effectiveness of gait retraining on running kinematics, kinetics, performance, pain, and injury in distance runners: asystematic review with meta-analysis[J]. J Orthop Sports Phys Ther, 2022, 52(4): 192-A5.
[7]
Yang J, Tibbetts AS, Covassin T, et al. Epidemiology of overuse and acute injuries among competitive collegiate athletes[J]. J Athl Train, 2012, 47(2): 198-204.
[8]
Shultz SJ, Nguyen AD, Leonard MD, et al. Thigh strength and activation as predictors of knee biomechanics during a drop jump task[J]. Med Sci Sports Exerc, 2009, 41(4): 857-866.
[9]
Lun V, Meeuwisse WH, Stergiou P, et al. Relation between running injury and static lower limb alignment in recreational runners[J]. Br J Sports Med, 2004, 38(5): 576-580.
[10]
Willems TM, De Clercq D, Delbaere K, et al. A prospective study of gait related risk factors for exercise-related lower leg pain[J]. Gait Posture, 2006, 23(1): 91-98.
[11]
Buist I, Bredeweg SW, Lemmink KA, et al. Predictors of running-related injuries in novice runners enrolled in a systematic training program: a prospective cohort study[J]. Am J Sports Med, 2010, 38(2): 273-280.
[12]
Napier C, Cochrane CK, Taunton JE, et al. Gait modifications to change lower extremity gait biomechanics in runners: a systematic review[J]. Br J Sports Med, 2015, 49(21): 1382-1388.
[13]
Messier SP, Martin DF, Mihalko SL, et al. A 2-year prospective cohort study of overuse running injuries: the runners and injury longitudinal study (TRAILS)[J]. Am J Sports Med, 2018, 46(9): 2211-2221.
[14]
RussekLN,ErricoDM. Prevalence, injury rate and, symptom frequency in generalized joint laxity and joint hypermobility syndrome in a "healthy" college population[J]. Clin Rheumatol, 2016, 35(4): 1029-1039.
[15]
Hoffman MD, Khodaee M, Nudell NG, et al. Recommendations on the appropriate level of medical support at ultramarathons[J]. Sports Med, 2020, 50(5): 871-884.
[16]
Gatterer H, Niedermeier M, Pocecco E, et al. Mortality in different mountain sports activities primarily practiced in the summer season-a narrative review[J/OL]. Int J Environ Res Public Health, 2019, 16(20): 3920. DOI:10.3390/ijerph16203920.
[17]
Townshend AD, WorringhamCJ, Stewart IB. Spontaneous pacing during overground hill running[J]. Med Sci Sports Exerc, 2010, 42(1): 160-169.
[18]
Gottschall JS, Kram R. Ground reaction forces during downhill and uphill running[J]. J Biomech, 2005, 38(3): 445-452.
[19]
Lay AN, Hass CJ,Gregor RJ. The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis[J]. J Biomech, 2006, 39(9): 1621-1628.
[20]
Snyder KL, KramR,Gottschall JS. The role of elastic energy storage and recovery in downhill and uphill running[J]. J ExpBiol, 2012, 215(pt 13): 2283-2287.
[21]
Strutzenberger G, Leutgeb L, Claußen L, et al. Gait on slopes: Differences in temporo-spatial, kinematic and kinetic gait parameters between walking on a ramp and on a treadmill[J]. Gait Posture, 2022, 91: 73-78.
[22]
Davis IS, Tenforde AS, Neal BS, et al. Gait retraining as an intervention for patellofemoral pain[J].Curr Rev Musculoskelet Med, 2020, 13(1): 103-114.
[23]
Gaudette LW, Bradach MM, de Souza Junior JR, et al. Clinical application of gait retraining in the injuredrunner[J/OL]. J Clin Med, 2022, 11(21): 6497. DOI:10.3390/jcm11216497.
[24]
Zhang Y, Huang W, Yao Z, et al. Anterior cruciate ligament injuries alter the kinematics of knees with or without meniscal deficiency[J]. Am J Sports Med, 2016, 44(12): 3132-3139.
[25]
Kang J, Chaloupka EC, Alysia Mastrangelo M, et al. Physiological and biomechanical analysis of treadmill walking up various gradients in men and women[J]. Eur J Appl Physiol, 2002, 86(6): 503-508.
[26]
Elfring R, de la Fuente M, Radermacher K. Assessment of optical localizer accuracy for computer aided surgery systems[J]. Comput Aided Surg, 2010, 15(1-3): 1-12.
[27]
Binkley JM, Stratford PW, Lott SA, et al. The lower extremity functional scale (LEFS): scale development, measurement properties, and clinical application. North American orthopaedicrehabilitation research network[J]. Phys Ther, 1999, 79(4): 371-383.
[28]
Emery CA, van den Berg C, Richmond SA, et al. Implementing a junior high school-based programme to reduce sports injuries through neuromuscular training (iSPRINT): a cluster randomised controlled trial (RCT)[J]. Br J Sports Med, 2020, 54(15): 913-919.
[29]
Toomey CM, Whittaker JL, Richmond SA, et al. Adiposity as a risk factor for sport injury in youth: a systematic review[J]. Clin J Sport Med, 2022, 32(4): 418-426.
[30]
KvistJ,Gillquist J. Anterior tibial translation during eccentric, isokinetic quadriceps work in healthy subjects[J]. Scand J Med Sci Sports, 1999, 9(4): 189-194.
[31]
Tsarouhas A, Giakas G, Malizos KN, et al. Dynamic effect of quadriceps muscle activation on anterior tibial translation after single-bundle and double-bundle anterior cruciate ligament reconstruction[J]. Arthroscopy, 2015, 31(7): 1303-1309.
[32]
Dewig DR, Johnston CD, Pietrosimone B, et al. Long-term gait biomechanics in level, uphill, and downhill conditions following anterior cruciate ligament reconstruction[J/OL]. ClinBiomech, 2021, 84: 105345. DOI:10.1016/j.clinbiomech.2021.105345.
[33]
Alexander N, Schwameder H. Effect of sloped walking on lower limb muscle forces[J]. Gait Posture, 2016, 47: 62-67.
[34]
Mouhli D, Cojean T, Lustig S, et al. Influence of hamstring stiffness on anterior tibial translation after anterior cruciate ligament rupture[J]. Knee, 2024, 47: 121-128.
[35]
Myer GD, Ford KR, Paterno MV, et al. The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes[J]. Am J Sports Med, 2008, 36(6): 1073-1080.
[36]
Uhorchak JM, Scoville CR, Williams GN, etal. Risk factors associated with noncontact injury of the anterior cruciate ligament[J]. Am J Sports Med, 2003, 31(6): 831-842.
[37]
Nathan JA, Davies K, Swaine I. Hypermobility and sports injury[J/OL]. BMJ Open Sport Exerc Med, 2018, 4(1): e000366. DOI:10.1136/bmjsem-2018-000366.
[38]
Ni QK, Song GY, Zhang ZJ, et al. Steep posterior tibialslope and excessive anterior tibialtranslation are predictive risk factors of primary anterior cruciate ligament reconstruction failure: acase-control study with prospectively collected data[J]. Am J Sports Med, 2020, 48(12): 2954-2961.
[39]
von Eisenhart-Rothe R, Bringmann C, Siebert M, et al. Femoro-tibial and menisco-tibial translation patterns in patients with unilateral anterior cruciate ligament deficiency—a potential cause of secondary meniscal tears[J]. J Orthop Res, 2004, 22(2): 275-282.
[40]
Aune AK, Cawley PW, Ekeland A. Quadriceps muscle contraction protects the anterior cruciate ligament during anterior tibialtranslation[J]. Am J Sports Med, 1997, 25(2): 187-190.
[41]
Zeng X, Xie Z, Zhong G, et al. The 6DOF knee kinematics of healthy subjects during sloped walking compared to level walking[J]. Gait Posture, 2022, 95: 198-203.
[42]
Swanson SC, Caldwell GE. An integrated biomechanical analysis of high speed incline and level treadmill running[J]. Med Sci Sports Exerc, 2000, 32(6): 1146-1155.
[43]
Vernillo G, Giandolini M, Brent Edwards W, et al. Biomechanics and physiology of uphill and downhill running[J]. Sports Med, 2017, 47(4): 615-629.
[44]
Wen C, Cates HE, Weinhandl JT, et al. Knee biomechanics of patients with total knee replacement during downhill walking on different slopes[J]. J SportHealthSci, 2022, 11(1): 50-57.
[45]
Sedaghatnezhad P, Shams M, Karimi N, et al. Uphill treadmill walking plus physical therapy versus physical therapy alone in the management of individuals with knee osteoarthritis: a randomized clinical trial[J]. Disabil Rehabil, 2021, 43(18): 2541-2549.
[46]
Sharifi M, Shirazi-Adl A. Knee flexion angle and muscle activations control the stability of an anterior cruciate ligament deficient joint in gait [J/OL]. J Biomech, 2021, 117: 110258. DOI:10.1016/j.jbiomech.2021.110258.
[47]
Wu R, Delahunt E, Ditroilo M, et al. Effect of knee joint angle and contraction intensity on hamstrings coactivation[J]. Med Sci Sports Exerc, 2017, 49(8): 1668-1676.
[48]
Tsai LC, Powers CM. Increased hip and knee flexion during landing decreases tibiofemoral compressive forces in women who have undergone anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2013, 41(2): 423-429.
[49]
Malinzak RA, Colby SM, Kirkendall DT, etal. A comparison of knee joint motion patterns between men and women in selected athletic tasks[J]. ClinBiomech, 2001, 16(5): 438-445.
[50]
Takabayashi T, Edama M, Inai T, etal. A mathematical modelling study investigating the influence of knee joint flexion angle and extension moment on patellofemoral joint reaction force and stress[J]. Knee, 2019, 26(6): 1323-1329.
[51]
Akbas T, Prajapati S, Ziemnicki D, et al. Hip circumduction is not a compensation for reduced knee flexion angle during gait[J]. J Biomech, 2019, 87: 150-156.
[52]
Ozlu O, Atilgan E. The effect of high-intensity laser therapy on pain and lower extremity function in patellofemoral pain syndrome: a single-blind randomized controlled trial[J/OL]. Lasers Med Sci, 2024, 39(1): 103. DOI:10.1007/s10103-024-04017-y.
[53]
Frank CB. Ligament structure, physiology and function[J]. J Musculoskelet Neuronal Interact, 2004, 4(2): 199-201.
[54]
Beynnon BD, Johnson RJ, Fleming BC, et al. The effect of functional knee bracing on the anterior cruciate ligament in the weight bearing and nonweight bearing knee[J]. Am J Sports Med, 1997, 25(3): 353-359.
[55]
Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies[J]. J Am Acad Orthop Surg, 2000, 8(3): 141-150.
[1] 张建桂, 杨塍尧, 贾绍茂. 两种股骨柄假体对全髋关节置换术围手术期影响[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 275-282.
[2] 王春久, 田向东, 谭冶彤, 薛志鹏, 张伟, 刘昂. 单平面胫骨高位截骨联合关节镜治疗内翻型膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 185-192.
[3] 刘金伟, 张净宇, 赵峰, 田东牧, 高小康, 胡永成, 徐卫国. 计算机仿真技术软件在人工膝关节假体设计研究的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 214-227.
[4] 李伊尧, 许杰. 远程全膝关节置换术随访及膝关节功能评价的进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 790-794.
[5] 谢云港, 范长海, 刘荣顺, 邓瑞晨. 不同术式治疗内侧间室膝骨关节炎的疗效[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 720-728.
[6] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[7] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[8] 刘波, 马玉容, 范筱, 刘婷. 压力接种训练干预在全膝关节置换术恐动症患者中的应用[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(04): 201-206.
[9] 乔凯, 田康, 陈琦, 邹吉扬, 李杰, 张卫国. 不同股骨假体屈曲角下人工膝关节生物力学特征的有限元分析[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(02): 65-76.
[10] 包良笑, 刘兆锋, 谢豪, 杨钦烽, 史占军. 美国住院患者膝关节翻修术后肺部并发症发病率及危险因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(01): 4-13.
[11] 宋庆成, 郑占乐, 王天瑞, 王宇钏, 张凯旋, 纳静, 蔚佳昊, 杨思繁, 宋九宏, 张英泽. “人老膝不老”:膝关节健康管理的全方位探索与实践[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 321-324.
[12] 郑占乐, 王宇钏, 蔚佳昊, 宋庆成, 张凯旋, 纳静, 王天瑞, 宋九宏, 张英泽, 王娟. 保膝须“开膝”——“开膝”在膝骨关节炎中的临床应用价值[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 325-330.
[13] 康清源, 张克石, 肖文韬, 谢培森, 东黎光, 袁平, 关振鹏. 在职钢铁工人群体膝关节骨关节炎流行情况及其可能的危险因素调查[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 248-255.
[14] 刘万虎, 步玮, 董玉娟, 李文君, 贾亚南, 刘翠翠, 任慧玲. 脑小血管病患者步态障碍及认知障碍与神经影像学特征的相关性[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 198-206.
[15] 夏振西, 谢鸿阳, 夏翠俏, 张楠, 曹俊杰, 赵弘轶, 黄勇华. 脑小血管病患者体脂百分比与步态特征及跌倒的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 556-563.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?