[1] |
Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis[J]. Instr Course Lect, 2005, 54: 465-480.
|
[2] |
Sanchez C, Pesesse L, Gabay O, et al. Regulation of subchondral bone osteoblast metabolism by cyclic compression[J]. Arthritis Rheum, 2012, 64(4): 1193-1203.
|
[3] |
Tang X, Wang SF, Zhan SY, et al. The prevalence of symptomatic knee osteoarthritis in China results from the China health and retirement longitudinal study[J]. Arthritis Rheumatol, 2016, 68(3): 648-653.
|
[4] |
Chen H, Wu J, Wang Z, et al. Trends and patterns of knee osteoarthritis in China: a longitudinal study of 17.7 million adults from 2008 to 2017[J]. Int J Environ Res Public Health, 2021, 18(16): 8864.
|
[5] |
王波,余楠生.膝骨关节炎阶梯治疗专家共识(2018年版)[J/CD].中华关节外科杂志(电子版),2019,13(1):124-130.
|
[6] |
中华医学会骨科学分会关节外科学组,中国医师协会骨科医师分会骨关节炎学组,国家老年疾病临床医学研究中心,中华骨科杂志编辑部.中国骨关节炎诊疗指南(2021年版)[J].中华骨科杂志,2021,41(18): 1291-1314.
|
[7] |
Kolasinski SL, Neogi T, Hochberg MC, et al. 2019 American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee[J]. Arthritis Care Res (Hoboken), 2020, 72(2): 220-233.
|
[8] |
Bannuru RR, Osani MC, Vaysbrot EE, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis[J]. Osteoarthritis Cartilage, 2019, 27(11): 1578-1589.
|
[9] |
张虎,冯志军,韩纲.肿瘤型人工膝关节置换术后假体并发症的临床研究[J/CD].中华关节外科杂志(电子版),2021,15(1):12-17.
|
[10] |
Gowen A, Shahjin F, Chand S, et al. Mesenchymal stem Cell-Derived extracellular vesicles: challenges in clinical applications[J/OL]. Front Cell Dev Biol, 2020, 8: 149. DOI: 10.3389/fcell.2020.00149
|
[11] |
Toma C, Wagner WR, Bowry S, et al. Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics[J]. Circ Res, 2009, 104(3): 398-402.
|
[12] |
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383.
|
[13] |
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30: 255-289.
|
[14] |
Tauro BJ, Greening DW, Mathias RA, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes[J]. Methods, 2012, 56(2): 293-304.
|
[15] |
Yang F, Liao X, Tian Y, et al. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies[J/OL]. Biotechnol J, 2017, 12(4). DOI: 10.1002/biot.201600699.
|
[16] |
Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Control Release, 2015, 219: 396-405.
|
[17] |
Lozano-Ramos I, Bancu I, Oliveira-Tercero A, et al. Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples[J/OL]. J Extracell Vesicles, 2015, 4: 27369. DOI: 10.3402/jev.v4.27369.
|
[18] |
Momen-Heravi F, Balaj L, Alian S, et al. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles[J/OL]. Front Physiol, 2012, 3: 162. DOI: 10.3389/fphys.2012.00162.
|
[19] |
Zhang H, Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization[J]. Nat Protoc, 2019, 14(4): 1027-1053.
|
[20] |
Furuta T, Miyaki S, Ishitobi H, et al. Mesenchymal stem Cell-Derived exosomes promote fracture healing in a mouse model[J]. Stem Cells Transl Med, 2016, 5(12): 1620-1630.
|
[21] |
Kolhe R, Hunter M, Liu S, et al. Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis[J/OL]. Sci Rep, 2017, 7(1): 2029. DOI: 10.1038/s41598-017-01905-y.
|
[22] |
Hu H, Dong L, Bu Z, et al. miR-23a-3p-abundant small extracellular vesicles released from gelma/nanoclay hydrogel for cartilage regeneration[J/OL]. J Extracell Vesicles, 2020, 9(1): 1778883. DOI: 10.1080/20013078.2020.1778883.
|
[23] |
Ham O, Song BW, Lee SY, et al. The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling[J]. Biomaterials, 2012, 33(18): 4500-4507.
|
[24] |
Wang R, Xu B, Xu H. TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b[J]. Cell Cycle, 2018, 17(24): 2756-2765.
|
[25] |
Mao G, Zhang Z, Hu S, et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A[J]. Stem Cell Res Ther, 2018, 9(1): 247.
|
[26] |
He L, Chen Y, Ke Z, et al. Exosomes derived from miRNA-210 overexpressing bone marrow mesenchymal stem cells protect lipopolysaccharide induced chondrocytes injury via the NF-κB pathway[J/OL]. Gene, 2020, 751: 144764. DOI: 10.1016/j.gene.2020.144764.
|
[27] |
Mao G, Xu Y, Long D, et al. Exosome-transported circRNA_0001236 enhances chondrogenesis and suppress cartilage degradation via the miR-3677-3p/Sox9 axis[J/OL]. Stem Cell Res Ther, 2021, 12(1): 389. DOI: 10.1186/s13287-021-02431-5
|
[28] |
Wu X, Crawford R, Xiao Y, et al. Osteoarthritic subchondral bone release exosomes that promote cartilage degeneration[J/OL]. Cells, 2021, 10(2): 251. DOI: 10.3390/cells10020251
|
[29] |
Zhang S, Chu WC, Lai RC, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration[J]. Osteoarthritis Cartilage, 2016, 24(12): 2135-2140.
|
[30] |
Qiu M, Liu D, Fu Q. MiR-129-5p shuttled by human synovial mesenchymal stem cell-derived exosomes relieves IL-1β induced osteoarthritis via targeting HMGB1[J/OL]. Life Sci, 2021, 269: 118987. DOI: 10.1016/j.lfs.2020.118987
|
[31] |
Kato T, Miyaki S, Ishitobi H, et al. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes[J/OL]. Arthritis Res Ther, 2014, 16(4): R163. DOI: 10.1186/ar4679.
|
[32] |
Gao K, Zhu W, Li H, et al. Association between cytokines and exosomes in synovial fluid of individuals with knee osteoarthritis[J]. Mod Rheumatol, 2020, 30(4): 758-764.
|
[33] |
Wang Y, Yu D, Liu Z, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix[J/OL]. Stem Cell Res Ther, 2017, 8(1): 189. DOI: 10.1186/s13287-017-0632-0.
|
[34] |
Cosenza S, Ruiz M, Toupet K, et al. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis[J/OL]. Sci Rep, 2017, 7(1): 16214. DOI: 10.1038/s41598-017-15376-8.
|
[35] |
Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model[J]. Theranostics, 2017, 7(1): 180-195.
|
[36] |
Liu XC, Wang LB, Ma CS, et al. Exosomes derived from platelet-rich plasma present a novel potential in alleviating knee osteoarthritis by promoting proliferation and inhibiting apoptosis of chondrocyte via Wnt/β-catenin signaling pathway[J/OL]. J Orthop Surg Res, 2019, 14(1): 470. DOI: 10.1186/s13018-019-1529-7.
|
[37] |
Duan A, Shen K, Li B, et al. Extracellular vesicles derived from LPS-preconditioned human synovial mesenchymal stem cells inhibit extracellular matrix degradation and prevent osteoarthritis of the knee in a mouse model[J/OL]. Stem Cell Res Ther, 2021, 12(1): 427. DOI: 10.1186/s13287-021-02507-2.
|
[38] |
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J/OL]. J Extracell Vesicles, 2018, 7(1): 1535750. DOI: 10.1080/20013078.2018.1535750.
|
[39] |
Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper[J/OL]. J Extracell Vesicles, 2015, 4: 30087. DOI: 10.3402/jev.v4.30087.
|
[40] |
Huyan T, Li H, Peng H, et al. Extracellular vesicles - advanced nanocarriers in cancer therapy: progress and achievements[J/OL]. Int J Nanomedicine, 2020, 15: 6485-6502. DOI: 0.2147/IJN.S238099.
|
[41] |
Yao X, Lyu P, Yoo K, et al. Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing[J/OL]. J Extracell Vesicles, 2021, 10(5): e12076. DOI: 10.1002/jev2.12076.
|
[42] |
Li W, Liu Y, Zhang P, et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration[J]. ACS Appl Mater Interfaces, 2018, 10(6): 5240-5254.
|
[43] |
Zhang K, Zhao X, Chen X, et al. Enhanced therapeutic effects of mesenchymal stem Cell-Derived exosomes with an injectable hydrogel for hindlimb ischemia treatment[J]. ACS Appl Mater Interfaces, 2018, 10(36): 30081-30091.
|