切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 592 -598. doi: 10.3877/cma.j.issn.1674-134X.2022.05.010

综述

射频消融用于关节软骨损伤的治疗研究进展
林潮盛1, 熊建义1, 朱伟民1, 陆伟1, 邓桢翰1,()   
  1. 1. 518035 深圳大学第一附属医院,深圳市第二人民医院运动医学科
  • 收稿日期:2021-07-04 出版日期:2022-10-01
  • 通信作者: 邓桢翰
  • 基金资助:
    国家自然科学基金青年项目(81902303); 广东省基础与应用基础研究基金(2020A151501048); 深圳市科技计划资助(RCBS20200714114856299,JCYJ20190806164216661); 深圳市第二人民医院临床研究项目(20203357028)

Research progress of radiofrequency ablation in treatment of articular cartilage injury

Chaosheng Lin1, Jianyi Xiong1, Weimin Zhu1, Wei Lu1, Zhenhan Deng1,()   

  1. 1. Department of Sports Medicine, Shenzhen Second People’s Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
  • Received:2021-07-04 Published:2022-10-01
  • Corresponding author: Zhenhan Deng
引用本文:

林潮盛, 熊建义, 朱伟民, 陆伟, 邓桢翰. 射频消融用于关节软骨损伤的治疗研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(05): 592-598.

Chaosheng Lin, Jianyi Xiong, Weimin Zhu, Wei Lu, Zhenhan Deng. Research progress of radiofrequency ablation in treatment of articular cartilage injury[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(05): 592-598.

软骨损伤普遍出现在正常人群中,严重影响了人们的日常生活与工作,然而软骨损伤仍是临床治疗的一个巨大挑战。机械清理、激光等传统软骨成形术由于其缺陷,无法满足临床应用的需求。射频软骨成形术作为一种更加安全、有效的技术,逐渐成为研究的热点。虽然基础研究表明射频产生的局部高温可能造成软骨细胞的死亡,但在长期的临床随访研究中,大量证据表明,相比机械清理软骨成形术,射频软骨成形术取得了更好的结果,并在一定程度上延缓了骨关节炎的进展。在使用的过程中,需要通过对射频使用时间、探头距离、灌洗液的流量和温度等方面的控制,来保证其安全性。本文通过简要介绍射频的历史、机制,综述了射频的临床应用结果,讨论如何更安全、有效地使用射频处理软骨损伤。

Cartilage injury is common in normal population, which seriously affects people′s daily life and work. However, cartilage injury is still a great challenge in clinical treatment. The traditional chondroplasty, such as mechanical debridement and laser, cannot meet the needs of clinical demands due to their defects. Radiofrequency chondroplasty, as a safer and more effective technique, has gradually become a research hotspot. Although basic studies have shown that local heat generated by radiofrequency may contribute to chondrocyte death. In long-term clinical follow-up studies, there is substantial evidence that radiofrequency chondroplasty obtains better outcome and somewhat delays the progression of osteoarthritis compared to mechanical debridement. When using radiofrequency, clinicians need to control the use time, distance of the radiofrequency probe, flow and temperature of the lavage fluid to ensure its safety. This article briefly introduced the history and mechanism of radiofrequency, summarized the clinical application results of radiofrequency, and discussed how to use radiofrequency more safely and effectively.

表1 使用射频时间、功率设置、温度及灌洗液等因素对关节软骨的影响
[1]
Von KA, Atzwanger J, Forstner R, et al. Radiological evaluation of cartilage after microfracture treatment: a long-term follow-up study[J]. Eur J Radiol, 2012, 81(7): 1618-1624.
[2]
Dutcheshen N, Maerz T, Rabban P, et al. The acute effect of bipolar radiofrequency energy thermal chondroplasty on intrinsic biomechanical properties and thickness of chondromalacic human articular cartilage[J/OL]. J Biomech Eng, 2012, 134(8): 081007. DOI:10.1115/1.4007105.
[3]
Buckwalter JA. Articular cartilage injuries[J]. Clin Orthop Relat Res, 2002, (402):21-37.
[4]
Barbour KE, Helmick CG, Boring M, et al. Vital signs: prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation-United States, 2013-2015[J]. MMWR Morb Mortal Wkly Rep, 2017, 66(9): 246-253.
[5]
Hancock KJ, Westermann RR, Shamrock AG, et al. Trends in knee articular cartilage treatments: an American board of orthopaedic surgery database study[J]. J Knee Surg, 2019, 32(1): 85-90.
[6]
张姝江,王瑛,陈艺,等.生物力学在关节软骨修复中的作用[J/CD].中华关节外科杂志(电子版)201812(6):842-848.
[7]
张波,高琼,李小毅,等.甲状腺结节射频消融的历史、现状及展望[J].重庆医科大学学报201843(12):1537-1541.
[8]
Cushing H, Bovie WT. Electro-surgery as an aid to the removal of intracranial tumors[J]. Surg Gynecol Obstet, 1928, 47:751-784.
[9]
Pawl RP. Percutaneous radiofrequency electrocoagulation in the control of chronic pain[J]. Surg Clin North Am, 1975, 55(1): 167-179.
[10]
Huang SK, Bharati S, Graham AR, et al. Closed chest catheter desiccation of the atrioventricular junction using radiofrequency energy--a new method of catheter ablation[J]. J Am Coll Cardiol, 1987, 9(2): 349-358.
[11]
Schosheim PM, Caspari RB. Evaluation of electrosurgical meniscectomy in rabbits[J]. Arthroscopy, 1986, 2(2): 71-76.
[12]
Turner AS, Tippett JW, Powers BE, et al. Radiofrequency (electrosurgical) ablation of articular cartilage: a study in sheep[J]. Arthroscopy, 1998, 14(6): 585-591.
[13]
Uthamanthil RK, Edwards RB, Lu Y, et al. In vivo study on the short-term effect of radiofrequency energy on chondromalacic patellar cartilage and its correlation with calcified cartilage pathology in an equine model[J]. J Orthop Res, 2006, 24(4): 716-724.
[14]
Khan AM, Dillingham MF. Electrothermal chondroplasty--monopolar[J]. Clin Sports Med, 2002, 21(4): 663-674.
[15]
Uribe JW. Electrothermal chondroplasty--bipolar[J]. Clin Sports Med, 2002, 21(4): 675-685.
[16]
Ganguly K, Mcrury ID, Goodwin PM, et al. Histopomorphic evaluation of radiofrequency mediated débridement chondroplasty[J]. Open Orthop J, 2010, 4(1): 211-220.
[17]
Wienecke H, Lobenhoffer P. Basic principles of radiosurgical systems and their applications in arthroscopy[J]. Unfallchirurg, 2003, 106(1):2-12.
[18]
Lu Y, Edwards RB 3rd, Cole BJ, et al. Thermal chondroplasty with radiofrequency energy. An in vitro comparison of bipolar and monopolar radiofrequency devices[J]. Am J Sports Med, 2001, 29(1): 42-49.
[19]
Edwards RB 3rd, Lu Y, Rodriguez E, et al. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar and monopolar radiofrequency devices[J]. Arthroscopy, 2002, 18(4): 339-346.
[20]
Caffey S, Mcpherson E, Moore B, et al. Effects of radiofrequency energy on human articular cartilage: an analysis of 5 systems[J]. Am J Sports Med, 2005, 33(7): 1035-1039.
[21]
Peng L, Li Y, Zhang K, et al. The time-dependent effects of bipolar radiofrequency energy on bovine articular cartilage[J/OL]. J Orthop Surg Res, 2020, 15(1): 106. DOI:10.1186/s13018-020-01626-5.
[22]
Lu Y, Edwards RB 3rd, Nho S, et al. Thermal chondroplasty with bipolar and monopolar radiofrequency energy: effect of treatment time on chondrocyte death and surface contouring[J]. Arthroscopy, 2002, 18(7): 779-788.
[23]
Mitchell ME, Kidd D, Lotto ML, et al. Determination of factors influencing tissue effect of thermal chondroplasty: an ex vivo investigation[J]. Arthroscopy, 2006, 22(4): 351-355.
[24]
Wang N, Liu YJ, Xue J, et al. Effects of radiofrequency energy on porcine articular cartilage: higher-power settings in ablation mode show lower thermal radiation injury[J]. Knee Surg Sports Traumatol Arthrosc, 2012, 20(10): 1901-1906.
[25]
Lotto ML, Lu Y, Mitchell ME, et al. An ex vivo thermal chondroplasty model:the association of a char-like layer and underlying cell death[J]. Arthroscopy, 2006, 22(11): 1159-1162.
[26]
Ryan A, Bertone AL, Kaeding CC, et al. The effects of radiofrequency energy treatment on chondrocytes and matrix of fibrillated articular cartilage[J]. Am J Sports Med, 2003, 31(3): 386-391.
[27]
Kaplan LD, Chu CR, Bradley JP, et al. Recovery of chondrocyte metabolic activity after thermal exposure[J]. Am J Sports Med, 2003, 31(3): 392-398.
[28]
Voss JR, Lu Y, Edwards RB, et al. Effects of thermal energy on chondrocyte viability[J]. Am J Vet Res, 2006, 67(10): 1708-1712.
[29]
Kaplan L, Uribe JW. The acute effects of radiofrequency energy in articular cartilage: an in vitro study[J]. Arthroscopy, 2000, 16(1): 2-5.
[30]
Kaplan LD, Ernsthausen JM, Bradley JP, et al. The thermal field of radiofrequency probes at chondroplasty settings[J]. Arthroscopy, 2003, 19(6): 632-640.
[31]
Lu Y, Edwards RB 3rd, Nho S, et al. Lavage solution temperature influences depth of chondrocyte death and surface contouring during thermal chondroplasty with temperature-controlled monopolar radiofrequency energy[J]. Am J Sports Med, 2002, 30(5): 667-673.
[32]
Ahrens P, Mueller D, Siebenlist S, et al. The influence of Radio frequency ablation on intra-articular fluid temperature in the ankle joint--a cadaver study[J/OL]. BMC Musculoskelet Disord, 2018, 19(1): 413. DOI:10.1186/s12891-018-2347-5.
[33]
Chivot M, Airaudi S, Galland A, et al. Analysis of parameters influencing intraarticular temperature during radiofrequency use in shoulder arthroscopy[J]. Eur J Orthop Surg Traumatol, 2019, 29(6): 1205-1210.
[34]
Liptak MG, Theodoulou A. Arthroscopic chondral debridement using radiofrequency ablation for patellofemoral compartment pathology[J]. Arthrosc Tech, 2017, 6(5): e1879-e1883.
[35]
Matthews B, Wilkinson M, Mcewen P, et al. In vivo arthroscopic temperatures: a comparison between 2 types of radiofrequency ablation systems in arthroscopic anterior cruciate ligament reconstruction-a randomized controlled trial[J]. Arthroscopy, 2017, 33(1): 165-172.
[36]
Huang Y, Zhang Y, Ding X, et al. Working conditions of bipolar radiofrequency on human articular cartilage repair following thermal injury during arthroscopy[J]. Chin Med J (Engl), 2014, 127(22): 3881-3886.
[37]
Voloshin I, Morse KR, Allred CD, et al. Arthroscopic evaluation of radiofrequency chondroplasty of the knee[J]. Am J Sports Med, 2007, 35(10): 1702-1707.
[38]
Voloshin I, Dehaven K, Steadman JR. Second-look arthroscopic observations after radiofrequency treatment of partial thickness articular cartilage defects in human knees: report of four cases[J]. J Knee Surg, 2005, 18(2): 116-122.
[39]
Gharaibeh M, Szomor A, Chen DB, et al. A retrospective study assessing safety and efficacy of bipolar radiofrequency ablation for knee chondral lesions[J]. Cartilage, 2018, 9(3): 241-247.
[40]
Barber FA, Iwasko NG. Treatment of grade III femoral chondral lesions: mechanical chondroplasty versus monopolar radiofrequency probe[J]. Arthroscopy, 2006, 22(12): 1312-1317.
[41]
Kang RW, Gomoll AH, Nho SJ, et al. Outcomes of mechanical debridement and radiofrequency ablation in the treatment of chondral defects: a prospective randomized study[J]. J Knee Surg, 2008, 21(2): 116-121.
[42]
Spahn G, Hofmann GO, Von Engelhardt LV. Mechanical debridement versus radiofrequency in knee chondroplasty with concomitant medial meniscectomy: 10-year results from a randomized controlled study[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(5): 1560-1568.
[43]
Piper D, Taylor C, Howells N, et al. Use of a novel variable power radiofrequency ablation system specific for knee chondroplasty: surgical experience and two-year patient results[J/OL]. Cureus, 2021, 13(1): e12864. DOI:10.7759/cureus.12864.
[44]
Solomon DJ, Navaie M, Stedje-Larsen ET, et al. Glenohumeral chondrolysis after arthroscopy: a systematic review of potential contributors and causal pathways[J]. Arthroscopy, 2009, 25(11): 1329-1342.
[45]
Mcfarland EG, Kim TK, Banchasuek P, et al. Histologic evaluation of the shoulder capsule in normal shoulders, unstable shoulders, and after failed thermal capsulorrhaphy[J]. Am J Sports Med, 2002, 30(5): 636-642.
[46]
Suarez-Ahedo C, Pavan VS, Stake CE, et al. What are the current indications for use of radiofrequency devices in hip arthroscopy? A systematic review[J]. J Hip Preserv Surg, 2015, 2(4): 323-331.
[47]
单宇宙,颜连启,卢志华,等.关节镜下射频消融术治疗臀肌挛缩症的研究进展[J/CD].中华关节外科杂志(电子版)202014(4):469-474.
[48]
Rehan-Ul-Ha R, Yang HK, Park KS, et al. An unusual case of chondrolysis of the hip following excision of a torn acetabular labrum[J]. Arch Orthop Trauma Surg, 2010, 130(1): 65-70.
[49]
Más MJ, Sanz RJ, Morales SM, et al. Chondrolysis after hip arthroscopy[J]. Arthroscopy, 2015, 31(1): 167-172.
[50]
Jang E, Danoff JR, Rajfer RA, et al. Revision wrist arthroscopy after failed primary arthroscopic treatment[J]. J Wrist Surg, 2014, 3(1): 30-36.
[51]
Zhu XZ, Yang L, Duan XJ. Arthroscopically assisted anterior treatment of symptomatic large talar bone cyst[J].J Foot Ankle Surg, 2019, 58(1): 151-155.
[52]
Huber M, Schlosser D, Stenzel S, et al. Quantitative analysis of surface contouring with pulsed bipolar radiofrequency on thin chondromalacic cartilage[J/OL]. Biomed Res Int, 2020: 1242086. DOI:10.1155/2020/1242086.
[53]
Giddins G, Shewring D, Downing N. Articular cartilage and soft tissue damage from radiofrequency thermal ablation wands at wrist arthroscopy[J]. J Hand Surg Eur Vol, 2021, 46(6): 632-636.
[54]
Rozbruch SR, Wickiewicz TL, Dicarlo EF, et al. Osteonecrosis of the knee following arthroscopic laser meniscectomy[J]. Arthroscopy, 1996, 12(2): 245-250.
[55]
Muscolo DL, Costa-Paz M, Makino A, et al. Osteonecrosis of the knee following arthroscopic meniscectomy in patients over 50-years old[J]. Arthroscopy, 1996, 12(3): 273-279.
[56]
Türker M, Çetik Ö, Çlrpar M, et al. Postarthroscopy osteonecrosis of the knee[J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(1): 246-250.
[57]
Encalada I, Richmond JC. Osteonecrosis after arthroscopic meniscectomy using radiofrequency[J]. Arthroscopy, 2004, 20(6): 632-636.
[58]
Koller U, Springer B, Rentenberger C, et al. Radiofrequency chondroplasty may not have a long-lasting effect in the treatment of concomitant grade II patellar cartilage defects in humans[J/OL]. J Clin Med, 2020, 9(4): 1202. DOI:10.3390/jcm9041202.
[1] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[2] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[3] 肖志满, 龚煜, 谢景凌, 刘斌伟. 上下肢关节镜手术后患者下肢深静脉血栓发生的对比研究[J]. 中华关节外科杂志(电子版), 2023, 17(05): 601-606.
[4] 杨国栋, 张辉, 郭珈, 曲迪, 张静, 戚超. 外侧半月板后角撕裂是否修复的术后疗效对比[J]. 中华关节外科杂志(电子版), 2023, 17(05): 619-624.
[5] 马鹏程, 刘伟, 张思平. 股骨髋臼撞击综合征关节镜手术中闭合关节囊的疗效影响[J]. 中华关节外科杂志(电子版), 2023, 17(05): 653-662.
[6] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[7] 邢阳, 何爱珊, 康焱, 杨子波, 孟繁钢, 邬培慧. 前交叉韧带单束联合前外侧结构重建的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(04): 508-519.
[8] 吴俊贤, 曾俊杰, 许有银, 苑博. 体外冲击波疗法辅助治疗肩袖修补术后关节僵硬[J]. 中华关节外科杂志(电子版), 2023, 17(04): 571-576.
[9] 齐伟亚, 方杰, 吴衡, 刘波. 掌侧小切口联合腕关节镜治疗AO-C型桡骨远端骨折[J]. 中华关节外科杂志(电子版), 2023, 17(04): 577-582.
[10] 邬春虎, 马玉海, 陈长松, 尹华东, 朱晓峰, 何剑星, 刘彧. 冲击波联合富血小板血浆对骨关节炎软骨损伤的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(03): 334-339.
[11] 张程, 何海军, 张光熠, 熊冰朗, 田天照, 孙诗艺, 吴子轩. 抗凝剂预防膝关节镜术后血栓发生的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(03): 340-347.
[12] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[13] 李程, 朱梁, 庞勇, 张星晨, 查国春, 郭开今. 改良加强减张无结缝线桥技术治疗肩袖撕裂合并冻结肩[J]. 中华关节外科杂志(电子版), 2023, 17(03): 424-429.
[14] 刘延子, 王维军, 韩向东, 田学东. 保留残余腱束与残端重建前交叉韧带后外侧束[J]. 中华关节外科杂志(电子版), 2023, 17(03): 439-442.
[15] 张镇斌, 闫兆龙, 王功腾, 张文琦, 王旭凤, 李广兴, 孙华强, 李树锋. 关节镜对胫骨高位截骨术治疗膝骨关节炎的效果研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 218-225.
阅读次数
全文


摘要