[1] |
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J/OL]. Nat Rev Dis Primers, 2016, 2: 16072. DOI: 10.1038/nrdp.2016.72.
|
[2] |
Karsdal MA, Michaelis M, Ladel C, et al. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future[J]. Osteoarthritis Cartilage, 2016, 24(12): 2013-2021.
|
[3] |
Glyn-Jones S, Palmer AR, Agricola R, et al. Osteoarthritis[J]. Lancet, 2015, 386(9991): 376-387.
|
[4] |
Ding C, Jones G, Wluka AE, et al. What can we learn about osteoarthritis by studying a healthy person against a person with early onset of disease?[J]. Curr Opin Rheumatol, 2010, 22(5): 520-527.
|
[5] |
Wang X, Oo WM, Linklater JM. What is the role of imaging in the clinical diagnosis of osteoarthritis and disease management?[J]. Rheumatology (Oxford), 2018, 57(suppl_4): iv51-iv60.
|
[6] |
Freudiger CW, Min W, Saar BG, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322(5909): 1857-1861.
|
[7] |
Eberhardt K, Stiebing C, Matthäus C, et al. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update[J]. Expert Rev Mol Diagn, 2015, 15(6): 773-787.
|
[8] |
Ishimaru JI, Ogi N, Mizuno S, et al. Quantitation of chondroitin-sulfates, disaccharides and hyaluronan in normal, early and advanced osteoarthritic sheep temporomandibular joints[J]. Osteoarthritis Cartilage, 2001, 9(4): 365-370.
|
[9] |
Di Rosa M, Castrogiovanni P, Musumeci G. The synovium theory: can exercise prevent knee osteoarthritis? The role of mechanokines, a possible biological key[J/OL]. J Funct Morphol Kinesiol, 2019, 4(1): 11. DOI: 10.3390/jfmk4010011.
|
[10] |
Madkhali A, Chernos M, Fakhraei S, et al. Osteoarthritic synovial fluid and correlations with protein concentration[J]. Biorheology, 2016, 53(3-4): 123-136.
|
[11] |
Singh S, Kumar D, Sharma NR. Role of hyaluronic Acid in early diagnosis of knee osteoarthritis[J]. J Clin Diagn Res, 2014, 8(12): LC04-LC07.
|
[12] |
Dehring KA, Mandair GS, Roessler BJ, et al. Surface-enhanced Raman spectroscopy detection of hyaluronic acid: a potential biomarker for osteoarthritis[M]//New Approaches in Biomedical Spectroscopy. Washington, DC: American Chemical Society, 2007: 123-137.
|
[13] |
Mosier-Boss PA. Review on SERS of bacteria[J]. Biosensors (Basel), 2017, 7(4): 51. DOI: 10.3390/bios7040051.
|
[14] |
Bocsa CD, Moisoiu V, Stefancu A, et al. Knee osteoarthritis grading by resonant Raman and surface-enhanced Raman scattering (SERS) analysis of synovial fluid[J/OL]. Nanomed-Nanotechnol Biol Med, 2019, 20: 102012. DOI: 10.1016/j.nano.2019.04.015.
|
[15] |
朱勇康,马丹英,陆燕飞,等. 骨关节炎滑液的表面增强拉曼光谱技术研究[J]. 分析化学,2020, 48(4): 484-490.
|
[16] |
Esmonde-White KA, Mandair GS, Raaii F, et al. Raman spectroscopy of synovial fluid as a tool for diagnosing osteoarthritis[J/OL]. J Biomed Opt, 2009, 14(3): 034013. DOI: 10.1117/1.3130338.
|
[17] |
王璐璐,刘磊,李盼,等. 对KOA模型大鼠血清、膝关节肌肉和滑膜组织的SERS分析[J]. 光谱学与光谱分析,2020, 40(9): 2751-2755.
|
[18] |
Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function[J]. Sports Health, 2009, 1(6): 461-468.
|
[19] |
Xu X, Lv H, Li X, et al. Danshen attenuates cartilage injuries in osteoarthritis in vivo and in vitro by activating JAK2/STAT3 and AKT pathways[J]. Exp Anim, 2018, 67(2): 127-137.
|
[20] |
van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?[J]. Osteoarthritis Cartilage, 2012, 20(3): 223-232.
|
[21] |
Dehring KA, Smukler AR, Roessler BJ, et al. Correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy[J]. Appl Spectrosc, 2006, 60(4): 366-372.
|
[22] |
Dehring KA, Crane NJ, Smukler AR, et al. Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy[J]. Appl Spectrosc, 2006, 60(10): 1134-1141.
|
[23] |
Esmonde-White KA, Esmonde-White FW, Morris MD, et al. Fiber-optic Raman spectroscopy of joint tissues[J]. Analyst, 2011, 136(8): 1675-1685.
|
[24] |
Chen YC, Brown CP. Embrittlement of collagen in early-stage human osteoarthritis[J/OL]. J Mech Behav Biomed Mater, 2020, 104: 103663. DOI: 10.1016/j.jmbbm.2020.103663.
|
[25] |
Ren P, Niu H, Cen H, et al. Biochemical and morphological abnormalities of subchondral bone and their association with cartilage degeneration in spontaneous osteoarthritis[J]. Calcif Tissue Int, 2021, 109(2): 179-189.
|
[26] |
Unal M, Akkus O. Shortwave-infrared Raman spectroscopic classification of water fractions in articular cartilage ex vivo[C/OL]// 2018: 015008. DOI: 10.1117/1.JBO.23.1.015008.
|
[27] |
Takahashi Y, Sugano N, Takao M, et al. Raman spectroscopy investigation of load-assisted microstructural alterations in human knee cartilage: preliminary study into diagnostic potential for osteoarthritis[J]. J Mech Behav Biomed Mater, 2014, 31: 77-85.
|
[28] |
Kumar R, Grønhaug KM, Afseth NK, et al. Optical investigation of osteoarthritic human cartilage (ICRS grade) by confocal Raman spectroscopy: a pilot study[J]. Anal Bioanal Chem, 2015, 407(26): 8067-8077.
|
[29] |
Kumar R, Singh GP, Grønhaug KM, et al. Single cell confocal Raman spectroscopy of human osteoarthritic chondrocytes: a preliminary study[J]. Int J Mol Sci, 2015, 16(5): 9341-9353.
|
[30] |
Pudlas M, Brauchle E, Klein TJ, et al. Non-invasive identification of proteoglycans and chondrocyte differentiation state by Raman microspectroscopy[J]. J Biophotonics, 2013, 6(2): 205-211.
|
[31] |
Tong L, Hao Z, Wan C, et al. Detection of depth-depend changes in porcine cartilage after wear test using Raman spectroscopy[J/OL]. J Biophotonics, 2018, 11(4): e201700217. DOI: 10.1002/jbio.201700217.
|
[32] |
Bonifacio A, Beleites C, Vittur F, et al. Chemical imaging of articular cartilage sections with Raman mapping, employing uni- and multi-variate methods for data analysis[J]. Analyst, 2010, 135(12): 3193-3204.
|
[33] |
Das Gupta S, Finnilä MAJ, Karhula SS, et al. Raman microspectroscopic analysis of the tissue-specific composition of the human osteochondral junction in osteoarthritis: a pilot study[J]. Acta Biomater, 2020, 106: 145-155.
|
[34] |
Nieuwoudt MK, Shahlori R, Naot D, et al. Raman spectroscopy reveals age- and sex-related differences in cortical bone from people with osteoarthritis[J/OL]. Sci Rep, 2020, 10(1): 19443. DOI: 10.1038/s41598-020-76337-2.
|
[35] |
Tomanik M, Nikodem A, Filipiak J. Microhardness of human cancellous bone tissue in progressive hip osteoarthritis[J]. J Mech Behav Biomed Mater, 2016, 64: 86-93.
|
[36] |
Goodyear SR, Aspden RM. Raman microscopy and bone[J]. Methods Mol Biol, 2019, 1914: 651-659.
|
[37] |
Kerns JG, Gikas PD, Buckley K, et al. Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease[J]. Arthritis Rheumatol, 2014, 66(5): 1237-1246.
|
[38] |
Lee YR, Findlay DM, Muratovic D, et al. Raman microspectroscopy demonstrates reduced mineralization of subchondral bone marrow lesions in knee osteoarthritis patients[J/OL]. Bone Rep, 2020, 12: 100269. DOI: 10.1016/j.bonr.2020.100269.
|
[39] |
de Souza RA, Xavier M, Mangueira NM, et al. Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats[J]. Lasers Med Sci, 2014, 29(2): 797-804.
|
[40] |
Matsunaga R, Takahashi Y, Takahashi RH, et al. A new method for diagnosing biochemical abnormalities of anterior cruciate ligament (ACL) in human knees: a Raman spectroscopic study[J]. Acta Biomater, 2019, 99: 284-294.
|
[41] |
Winchester MW, Winchester LW, Chou NY. Application of Raman scattering to the measurement of ligament tension[C]//2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. August 20-25, 2008, Vancouver, BC, Canada. IEEE, 2008: 3434-3437.
|
[42] |
Fishkin Z, Miller D, Ritter C, et al. Changes in human knee ligament stiffness secondary to osteoarthritis[J]. J Orthop Res, 2002, 20(2): 204-207.
|
[43] |
Gao X, Cheng H, Awada H, et al. A comparison of BMP2 delivery by coacervate and gene therapy for promoting human muscle-derived stem cell-mediated articular cartilage repair[J/OL]. Stem Cell Res Ther, 2019, 10(1): 346. DOI: 10.1186/s13287-019-1434-3.
|
[44] |
Bergholt MS, Albro MB, Stevens MM. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy[J]. Biomaterials, 2017, 140: 128-137.
|
[45] |
Evans JT, Walker RW, Evans JP, et al. How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up[J]. Lancet, 2019, 393(10172): 655-663.
|
[46] |
曾俊杰,郭艾. 手术相关因素对全膝关节置换术后功能恢复的影响[J/CD]. 中华关节外科杂志(电子版), 2019, 13(5): 611-614.
|
[47] |
李想,李世傲,钱嘉天,等. 两种镇痛方法对全膝关节置换术后康复的影响[J/CD]. 中华关节外科杂志(电子版), 2021, 15(2): 178-184.
|