切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 276 -282. doi: 10.3877/cma.j.issn.1674-134X.2023.02.018

综述

拉曼光谱技术用于监测膝关节炎的研究进展
朱意然, 覃健()   
  1. 211100 南京医科大学附属逸夫医院
  • 收稿日期:2021-05-28 出版日期:2023-04-01
  • 通信作者: 覃健

Research progress of Raman spectroscopy in monitoring knee osteoarthritis

Yiran Zhu, Jian Qin()   

  1. Yifu Hospital affiliated to Nanjing Medical University, Nanjing 211100, China
  • Received:2021-05-28 Published:2023-04-01
  • Corresponding author: Jian Qin
引用本文:

朱意然, 覃健. 拉曼光谱技术用于监测膝关节炎的研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(02): 276-282.

Yiran Zhu, Jian Qin. Research progress of Raman spectroscopy in monitoring knee osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(02): 276-282.

拉曼光谱在分子水平分辨率的显著优势以及微创甚至无创性的诊断潜力使得该技术被越来越多地应用到膝关节炎的研究中,借助拉曼光谱可以测定膝关节中关节软骨,关节液及滑膜组织等产生的微观改变,从而进行膝关节炎的早期诊断和治疗。本文拟通过对拉曼光谱在骨关节炎的检测及诊断应用做综述,为骨关节炎的早期诊断和治疗提供新的理论依据。

Raman spectroscopy is ever more applied in the research of knee arthritis, due to its significant advantages in identifications at molecular level and the potential applications in minimally invasive or even non-invasive diagnosis. With Raman spectroscopy, microscopic changes in articular cartilage, joint fluid and synovial tissue, etc. are identified for early diagnosis and treatment of knee arthritis. This paper intended to provide new theoretical basis for early diagnosis and treatment of osteoarthritis by reviewing the applications of Raman spectroscopy in detection and diagnosis of osteoarthritis.

表1 关节组织中部分成分拉曼光谱分值表
Table 1 Raman spectrum score of some components in joint tissue
[1]
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J/OL]. Nat Rev Dis Primers, 2016, 2: 16072. DOI: 10.1038/nrdp.2016.72.
[2]
Karsdal MA, Michaelis M, Ladel C, et al. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future[J]. Osteoarthritis Cartilage, 2016, 24(12): 2013-2021.
[3]
Glyn-Jones S, Palmer AR, Agricola R, et al. Osteoarthritis[J]. Lancet, 2015, 386(9991): 376-387.
[4]
Ding C, Jones G, Wluka AE, et al. What can we learn about osteoarthritis by studying a healthy person against a person with early onset of disease?[J]. Curr Opin Rheumatol, 2010, 22(5): 520-527.
[5]
Wang X, Oo WM, Linklater JM. What is the role of imaging in the clinical diagnosis of osteoarthritis and disease management?[J]. Rheumatology (Oxford), 2018, 57(suppl_4): iv51-iv60.
[6]
Freudiger CW, Min W, Saar BG, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322(5909): 1857-1861.
[7]
Eberhardt K, Stiebing C, Matthäus C, et al. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update[J]. Expert Rev Mol Diagn, 2015, 15(6): 773-787.
[8]
Ishimaru JI, Ogi N, Mizuno S, et al. Quantitation of chondroitin-sulfates, disaccharides and hyaluronan in normal, early and advanced osteoarthritic sheep temporomandibular joints[J]. Osteoarthritis Cartilage, 2001, 9(4): 365-370.
[9]
Di Rosa M, Castrogiovanni P, Musumeci G. The synovium theory: can exercise prevent knee osteoarthritis? The role of mechanokines, a possible biological key[J/OL]. J Funct Morphol Kinesiol, 2019, 4(1): 11. DOI: 10.3390/jfmk4010011.
[10]
Madkhali A, Chernos M, Fakhraei S, et al. Osteoarthritic synovial fluid and correlations with protein concentration[J]. Biorheology, 2016, 53(3-4): 123-136.
[11]
Singh S, Kumar D, Sharma NR. Role of hyaluronic Acid in early diagnosis of knee osteoarthritis[J]. J Clin Diagn Res, 2014, 8(12): LC04-LC07.
[12]
Dehring KA, Mandair GS, Roessler BJ, et al. Surface-enhanced Raman spectroscopy detection of hyaluronic acid: a potential biomarker for osteoarthritis[M]//New Approaches in Biomedical Spectroscopy. Washington, DC: American Chemical Society, 2007: 123-137.
[13]
Mosier-Boss PA. Review on SERS of bacteria[J]. Biosensors (Basel), 2017, 7(4): 51. DOI: 10.3390/bios7040051.
[14]
Bocsa CD, Moisoiu V, Stefancu A, et al. Knee osteoarthritis grading by resonant Raman and surface-enhanced Raman scattering (SERS) analysis of synovial fluid[J/OL]. Nanomed-Nanotechnol Biol Med, 2019, 20: 102012. DOI: 10.1016/j.nano.2019.04.015.
[15]
朱勇康,马丹英,陆燕飞,等. 骨关节炎滑液的表面增强拉曼光谱技术研究[J]. 分析化学2020, 48(4): 484-490.
[16]
Esmonde-White KA, Mandair GS, Raaii F, et al. Raman spectroscopy of synovial fluid as a tool for diagnosing osteoarthritis[J/OL]. J Biomed Opt, 2009, 14(3): 034013. DOI: 10.1117/1.3130338.
[17]
王璐璐,刘磊,李盼,等. 对KOA模型大鼠血清、膝关节肌肉和滑膜组织的SERS分析[J]. 光谱学与光谱分析2020, 40(9): 2751-2755.
[18]
Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function[J]. Sports Health, 2009, 1(6): 461-468.
[19]
Xu X, Lv H, Li X, et al. Danshen attenuates cartilage injuries in osteoarthritis in vivo and in vitro by activating JAK2/STAT3 and AKT pathways[J]. Exp Anim, 2018, 67(2): 127-137.
[20]
van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?[J]. Osteoarthritis Cartilage, 2012, 20(3): 223-232.
[21]
Dehring KA, Smukler AR, Roessler BJ, et al. Correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy[J]. Appl Spectrosc, 2006, 60(4): 366-372.
[22]
Dehring KA, Crane NJ, Smukler AR, et al. Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy[J]. Appl Spectrosc, 2006, 60(10): 1134-1141.
[23]
Esmonde-White KA, Esmonde-White FW, Morris MD, et al. Fiber-optic Raman spectroscopy of joint tissues[J]. Analyst, 2011, 136(8): 1675-1685.
[24]
Chen YC, Brown CP. Embrittlement of collagen in early-stage human osteoarthritis[J/OL]. J Mech Behav Biomed Mater, 2020, 104: 103663. DOI: 10.1016/j.jmbbm.2020.103663.
[25]
Ren P, Niu H, Cen H, et al. Biochemical and morphological abnormalities of subchondral bone and their association with cartilage degeneration in spontaneous osteoarthritis[J]. Calcif Tissue Int, 2021, 109(2): 179-189.
[26]
Unal M, Akkus O. Shortwave-infrared Raman spectroscopic classification of water fractions in articular cartilage ex vivo[C/OL]//2018: 015008. DOI: 10.1117/1.JBO.23.1.015008.
[27]
Takahashi Y, Sugano N, Takao M, et al. Raman spectroscopy investigation of load-assisted microstructural alterations in human knee cartilage: preliminary study into diagnostic potential for osteoarthritis[J]. J Mech Behav Biomed Mater, 2014, 31: 77-85.
[28]
Kumar R, Grønhaug KM, Afseth NK, et al. Optical investigation of osteoarthritic human cartilage (ICRS grade) by confocal Raman spectroscopy: a pilot study[J]. Anal Bioanal Chem, 2015, 407(26): 8067-8077.
[29]
Kumar R, Singh GP, Grønhaug KM, et al. Single cell confocal Raman spectroscopy of human osteoarthritic chondrocytes: a preliminary study[J]. Int J Mol Sci, 2015, 16(5): 9341-9353.
[30]
Pudlas M, Brauchle E, Klein TJ, et al. Non-invasive identification of proteoglycans and chondrocyte differentiation state by Raman microspectroscopy[J]. J Biophotonics, 2013, 6(2): 205-211.
[31]
Tong L, Hao Z, Wan C, et al. Detection of depth-depend changes in porcine cartilage after wear test using Raman spectroscopy[J/OL]. J Biophotonics, 2018, 11(4): e201700217. DOI: 10.1002/jbio.201700217.
[32]
Bonifacio A, Beleites C, Vittur F, et al. Chemical imaging of articular cartilage sections with Raman mapping, employing uni- and multi-variate methods for data analysis[J]. Analyst, 2010, 135(12): 3193-3204.
[33]
Das Gupta S, Finnilä MAJ, Karhula SS, et al. Raman microspectroscopic analysis of the tissue-specific composition of the human osteochondral junction in osteoarthritis: a pilot study[J]. Acta Biomater, 2020, 106: 145-155.
[34]
Nieuwoudt MK, Shahlori R, Naot D, et al. Raman spectroscopy reveals age- and sex-related differences in cortical bone from people with osteoarthritis[J/OL]. Sci Rep, 2020, 10(1): 19443. DOI: 10.1038/s41598-020-76337-2.
[35]
Tomanik M, Nikodem A, Filipiak J. Microhardness of human cancellous bone tissue in progressive hip osteoarthritis[J]. J Mech Behav Biomed Mater, 2016, 64: 86-93.
[36]
Goodyear SR, Aspden RM. Raman microscopy and bone[J]. Methods Mol Biol, 2019, 1914: 651-659.
[37]
Kerns JG, Gikas PD, Buckley K, et al. Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease[J]. Arthritis Rheumatol, 2014, 66(5): 1237-1246.
[38]
Lee YR, Findlay DM, Muratovic D, et al. Raman microspectroscopy demonstrates reduced mineralization of subchondral bone marrow lesions in knee osteoarthritis patients[J/OL]. Bone Rep, 2020, 12: 100269. DOI: 10.1016/j.bonr.2020.100269.
[39]
de Souza RA, Xavier M, Mangueira NM, et al. Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats[J]. Lasers Med Sci, 2014, 29(2): 797-804.
[40]
Matsunaga R, Takahashi Y, Takahashi RH, et al. A new method for diagnosing biochemical abnormalities of anterior cruciate ligament (ACL) in human knees: a Raman spectroscopic study[J]. Acta Biomater, 2019, 99: 284-294.
[41]
Winchester MW, Winchester LW, Chou NY. Application of Raman scattering to the measurement of ligament tension[C]//2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. August 20-25, 2008, Vancouver, BC, Canada. IEEE, 2008: 3434-3437.
[42]
Fishkin Z, Miller D, Ritter C, et al. Changes in human knee ligament stiffness secondary to osteoarthritis[J]. J Orthop Res, 2002, 20(2): 204-207.
[43]
Gao X, Cheng H, Awada H, et al. A comparison of BMP2 delivery by coacervate and gene therapy for promoting human muscle-derived stem cell-mediated articular cartilage repair[J/OL]. Stem Cell Res Ther, 2019, 10(1): 346. DOI: 10.1186/s13287-019-1434-3.
[44]
Bergholt MS, Albro MB, Stevens MM. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy[J]. Biomaterials, 2017, 140: 128-137.
[45]
Evans JT, Walker RW, Evans JP, et al. How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up[J]. Lancet, 2019, 393(10172): 655-663.
[46]
曾俊杰,郭艾. 手术相关因素对全膝关节置换术后功能恢复的影响[J/CD]. 中华关节外科杂志(电子版), 2019, 13(5): 611-614.
[47]
李想,李世傲,钱嘉天,等. 两种镇痛方法对全膝关节置换术后康复的影响[J/CD]. 中华关节外科杂志(电子版), 2021, 15(2): 178-184.
[1] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[2] 李志文, 李远志, 李华, 方志远. 糖皮质激素治疗膝骨关节炎疗效的网状Meta分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 484-496.
[3] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[4] 王啸, 李一凡, 沈素红, 曹国瑞, 史小涛, 袁彦浩, 谭红略. 全膝关节置换术后早期下肢深静脉血栓形成的时空规律[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 414-420.
[5] 杨士慷, 曹光磊. 膝骨关节炎三种术式患者满意度的术前影响因素[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 390-397.
[6] 陈松, 黄玲巧, 余清卿, 魏志鑫, 付琰. 单细胞RNA测序技术在骨关节炎软骨中的研究应用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 363-371.
[7] 郝鑫, 贾健, 任雨昊, 成凯, 王小虎. 膝关节骨关节炎的运动学疗法[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 264-270.
[8] 中华医学会骨科学分会关节外科学组, 解放军总医院第四医学中心骨科医学部, 国家骨科与运动康复临床医学研究中心. 中国膝骨关节炎非手术治疗专家共识(2023年版)[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 151-159.
[9] 朱苗娟, 杜聃, 廖慧斌, 陈毅斐, 杨炯. 以呼吸道症状为首发表现的复发性多软骨炎一例[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 335-337.
[10] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[11] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
[12] 魏贤杰, 黄河溯源, 张克石, 关振鹏. 山奈素通过抑制NF-κB减弱类风湿关节炎大鼠模型软骨细胞炎症及基质降解[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 375-382.
[13] 薛伟, 康少英, 郭洪生, 高庆亮, 张英民, 高彦平. 电针联合富血小板血浆治疗膝骨关节炎的疗效观察[J/OL]. 中华针灸电子杂志, 2024, 13(01): 13-17.
[14] 李益军, 梁兴森, 方细霞, 肖文良, 李湘, 高彦平, 李嘉, 李玲. 温针灸治疗早中期寒湿痹阻型膝骨关节炎的疗效观察[J/OL]. 中华针灸电子杂志, 2024, 13(01): 7-12.
[15] 郭楠, 徐学俊. 富马酸替诺福韦二吡呋酯在慢性乙型肝炎患者中诱导的范科尼综合征并低磷软骨病一例[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 173-177.
阅读次数
全文


摘要