切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 276 -282. doi: 10.3877/cma.j.issn.1674-134X.2023.02.018

综述

拉曼光谱技术用于监测膝关节炎的研究进展
朱意然, 覃健()   
  1. 211100 南京医科大学附属逸夫医院
  • 收稿日期:2021-05-28 出版日期:2023-04-01
  • 通信作者: 覃健

Research progress of Raman spectroscopy in monitoring knee osteoarthritis

Yiran Zhu, Jian Qin()   

  1. Yifu Hospital affiliated to Nanjing Medical University, Nanjing 211100, China
  • Received:2021-05-28 Published:2023-04-01
  • Corresponding author: Jian Qin
引用本文:

朱意然, 覃健. 拉曼光谱技术用于监测膝关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(02): 276-282.

Yiran Zhu, Jian Qin. Research progress of Raman spectroscopy in monitoring knee osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(02): 276-282.

拉曼光谱在分子水平分辨率的显著优势以及微创甚至无创性的诊断潜力使得该技术被越来越多地应用到膝关节炎的研究中,借助拉曼光谱可以测定膝关节中关节软骨,关节液及滑膜组织等产生的微观改变,从而进行膝关节炎的早期诊断和治疗。本文拟通过对拉曼光谱在骨关节炎的检测及诊断应用做综述,为骨关节炎的早期诊断和治疗提供新的理论依据。

Raman spectroscopy is ever more applied in the research of knee arthritis, due to its significant advantages in identifications at molecular level and the potential applications in minimally invasive or even non-invasive diagnosis. With Raman spectroscopy, microscopic changes in articular cartilage, joint fluid and synovial tissue, etc. are identified for early diagnosis and treatment of knee arthritis. This paper intended to provide new theoretical basis for early diagnosis and treatment of osteoarthritis by reviewing the applications of Raman spectroscopy in detection and diagnosis of osteoarthritis.

表1 关节组织中部分成分拉曼光谱分值表
Table 1 Raman spectrum score of some components in joint tissue
[1]
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J/OL]. Nat Rev Dis Primers, 2016, 2: 16072. DOI: 10.1038/nrdp.2016.72.
[2]
Karsdal MA, Michaelis M, Ladel C, et al. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future[J]. Osteoarthritis Cartilage, 2016, 24(12): 2013-2021.
[3]
Glyn-Jones S, Palmer AR, Agricola R, et al. Osteoarthritis[J]. Lancet, 2015, 386(9991): 376-387.
[4]
Ding C, Jones G, Wluka AE, et al. What can we learn about osteoarthritis by studying a healthy person against a person with early onset of disease?[J]. Curr Opin Rheumatol, 2010, 22(5): 520-527.
[5]
Wang X, Oo WM, Linklater JM. What is the role of imaging in the clinical diagnosis of osteoarthritis and disease management?[J]. Rheumatology (Oxford), 2018, 57(suppl_4): iv51-iv60.
[6]
Freudiger CW, Min W, Saar BG, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322(5909): 1857-1861.
[7]
Eberhardt K, Stiebing C, Matthäus C, et al. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update[J]. Expert Rev Mol Diagn, 2015, 15(6): 773-787.
[8]
Ishimaru JI, Ogi N, Mizuno S, et al. Quantitation of chondroitin-sulfates, disaccharides and hyaluronan in normal, early and advanced osteoarthritic sheep temporomandibular joints[J]. Osteoarthritis Cartilage, 2001, 9(4): 365-370.
[9]
Di Rosa M, Castrogiovanni P, Musumeci G. The synovium theory: can exercise prevent knee osteoarthritis? The role of mechanokines, a possible biological key[J/OL]. J Funct Morphol Kinesiol, 2019, 4(1): 11. DOI: 10.3390/jfmk4010011.
[10]
Madkhali A, Chernos M, Fakhraei S, et al. Osteoarthritic synovial fluid and correlations with protein concentration[J]. Biorheology, 2016, 53(3-4): 123-136.
[11]
Singh S, Kumar D, Sharma NR. Role of hyaluronic Acid in early diagnosis of knee osteoarthritis[J]. J Clin Diagn Res, 2014, 8(12): LC04-LC07.
[12]
Dehring KA, Mandair GS, Roessler BJ, et al. Surface-enhanced Raman spectroscopy detection of hyaluronic acid: a potential biomarker for osteoarthritis[M]//New Approaches in Biomedical Spectroscopy. Washington, DC: American Chemical Society, 2007: 123-137.
[13]
Mosier-Boss PA. Review on SERS of bacteria[J]. Biosensors (Basel), 2017, 7(4): 51. DOI: 10.3390/bios7040051.
[14]
Bocsa CD, Moisoiu V, Stefancu A, et al. Knee osteoarthritis grading by resonant Raman and surface-enhanced Raman scattering (SERS) analysis of synovial fluid[J/OL]. Nanomed-Nanotechnol Biol Med, 2019, 20: 102012. DOI: 10.1016/j.nano.2019.04.015.
[15]
朱勇康,马丹英,陆燕飞,等. 骨关节炎滑液的表面增强拉曼光谱技术研究[J]. 分析化学2020, 48(4): 484-490.
[16]
Esmonde-White KA, Mandair GS, Raaii F, et al. Raman spectroscopy of synovial fluid as a tool for diagnosing osteoarthritis[J/OL]. J Biomed Opt, 2009, 14(3): 034013. DOI: 10.1117/1.3130338.
[17]
王璐璐,刘磊,李盼,等. 对KOA模型大鼠血清、膝关节肌肉和滑膜组织的SERS分析[J]. 光谱学与光谱分析2020, 40(9): 2751-2755.
[18]
Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function[J]. Sports Health, 2009, 1(6): 461-468.
[19]
Xu X, Lv H, Li X, et al. Danshen attenuates cartilage injuries in osteoarthritis in vivo and in vitro by activating JAK2/STAT3 and AKT pathways[J]. Exp Anim, 2018, 67(2): 127-137.
[20]
van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?[J]. Osteoarthritis Cartilage, 2012, 20(3): 223-232.
[21]
Dehring KA, Smukler AR, Roessler BJ, et al. Correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy[J]. Appl Spectrosc, 2006, 60(4): 366-372.
[22]
Dehring KA, Crane NJ, Smukler AR, et al. Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy[J]. Appl Spectrosc, 2006, 60(10): 1134-1141.
[23]
Esmonde-White KA, Esmonde-White FW, Morris MD, et al. Fiber-optic Raman spectroscopy of joint tissues[J]. Analyst, 2011, 136(8): 1675-1685.
[24]
Chen YC, Brown CP. Embrittlement of collagen in early-stage human osteoarthritis[J/OL]. J Mech Behav Biomed Mater, 2020, 104: 103663. DOI: 10.1016/j.jmbbm.2020.103663.
[25]
Ren P, Niu H, Cen H, et al. Biochemical and morphological abnormalities of subchondral bone and their association with cartilage degeneration in spontaneous osteoarthritis[J]. Calcif Tissue Int, 2021, 109(2): 179-189.
[26]
Unal M, Akkus O. Shortwave-infrared Raman spectroscopic classification of water fractions in articular cartilage ex vivo[C/OL]//2018: 015008. DOI: 10.1117/1.JBO.23.1.015008.
[27]
Takahashi Y, Sugano N, Takao M, et al. Raman spectroscopy investigation of load-assisted microstructural alterations in human knee cartilage: preliminary study into diagnostic potential for osteoarthritis[J]. J Mech Behav Biomed Mater, 2014, 31: 77-85.
[28]
Kumar R, Grønhaug KM, Afseth NK, et al. Optical investigation of osteoarthritic human cartilage (ICRS grade) by confocal Raman spectroscopy: a pilot study[J]. Anal Bioanal Chem, 2015, 407(26): 8067-8077.
[29]
Kumar R, Singh GP, Grønhaug KM, et al. Single cell confocal Raman spectroscopy of human osteoarthritic chondrocytes: a preliminary study[J]. Int J Mol Sci, 2015, 16(5): 9341-9353.
[30]
Pudlas M, Brauchle E, Klein TJ, et al. Non-invasive identification of proteoglycans and chondrocyte differentiation state by Raman microspectroscopy[J]. J Biophotonics, 2013, 6(2): 205-211.
[31]
Tong L, Hao Z, Wan C, et al. Detection of depth-depend changes in porcine cartilage after wear test using Raman spectroscopy[J/OL]. J Biophotonics, 2018, 11(4): e201700217. DOI: 10.1002/jbio.201700217.
[32]
Bonifacio A, Beleites C, Vittur F, et al. Chemical imaging of articular cartilage sections with Raman mapping, employing uni- and multi-variate methods for data analysis[J]. Analyst, 2010, 135(12): 3193-3204.
[33]
Das Gupta S, Finnilä MAJ, Karhula SS, et al. Raman microspectroscopic analysis of the tissue-specific composition of the human osteochondral junction in osteoarthritis: a pilot study[J]. Acta Biomater, 2020, 106: 145-155.
[34]
Nieuwoudt MK, Shahlori R, Naot D, et al. Raman spectroscopy reveals age- and sex-related differences in cortical bone from people with osteoarthritis[J/OL]. Sci Rep, 2020, 10(1): 19443. DOI: 10.1038/s41598-020-76337-2.
[35]
Tomanik M, Nikodem A, Filipiak J. Microhardness of human cancellous bone tissue in progressive hip osteoarthritis[J]. J Mech Behav Biomed Mater, 2016, 64: 86-93.
[36]
Goodyear SR, Aspden RM. Raman microscopy and bone[J]. Methods Mol Biol, 2019, 1914: 651-659.
[37]
Kerns JG, Gikas PD, Buckley K, et al. Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease[J]. Arthritis Rheumatol, 2014, 66(5): 1237-1246.
[38]
Lee YR, Findlay DM, Muratovic D, et al. Raman microspectroscopy demonstrates reduced mineralization of subchondral bone marrow lesions in knee osteoarthritis patients[J/OL]. Bone Rep, 2020, 12: 100269. DOI: 10.1016/j.bonr.2020.100269.
[39]
de Souza RA, Xavier M, Mangueira NM, et al. Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats[J]. Lasers Med Sci, 2014, 29(2): 797-804.
[40]
Matsunaga R, Takahashi Y, Takahashi RH, et al. A new method for diagnosing biochemical abnormalities of anterior cruciate ligament (ACL) in human knees: a Raman spectroscopic study[J]. Acta Biomater, 2019, 99: 284-294.
[41]
Winchester MW, Winchester LW, Chou NY. Application of Raman scattering to the measurement of ligament tension[C]//2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. August 20-25, 2008, Vancouver, BC, Canada. IEEE, 2008: 3434-3437.
[42]
Fishkin Z, Miller D, Ritter C, et al. Changes in human knee ligament stiffness secondary to osteoarthritis[J]. J Orthop Res, 2002, 20(2): 204-207.
[43]
Gao X, Cheng H, Awada H, et al. A comparison of BMP2 delivery by coacervate and gene therapy for promoting human muscle-derived stem cell-mediated articular cartilage repair[J/OL]. Stem Cell Res Ther, 2019, 10(1): 346. DOI: 10.1186/s13287-019-1434-3.
[44]
Bergholt MS, Albro MB, Stevens MM. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy[J]. Biomaterials, 2017, 140: 128-137.
[45]
Evans JT, Walker RW, Evans JP, et al. How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up[J]. Lancet, 2019, 393(10172): 655-663.
[46]
曾俊杰,郭艾. 手术相关因素对全膝关节置换术后功能恢复的影响[J/CD]. 中华关节外科杂志(电子版), 2019, 13(5): 611-614.
[47]
李想,李世傲,钱嘉天,等. 两种镇痛方法对全膝关节置换术后康复的影响[J/CD]. 中华关节外科杂志(电子版), 2021, 15(2): 178-184.
[1] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[2] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[3] 李鸿昌, 孙艳宏, 高旺, 张金才, 牛亚清, 张国梁. 滑膜软骨瘤病的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 679-683.
[4] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[5] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[6] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[7] 余泽俊, 苏松川, 付燕, 黄文凭. 自体膝关节骨软骨移植治疗距骨骨软骨损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(04): 592-596.
[8] 胡银华, 薛龙. 中国中老年人症状性膝骨关节炎的发病率及危险因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 470-478.
[9] 罗璠, 饶志涛. 机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制[J]. 中华关节外科杂志(电子版), 2023, 17(04): 528-533.
[10] 周晓强, 金宇杰, 李志强, 徐人杰, 张向鑫, 陈广祥, 虞宵. 运动学与机械学对线在全膝关节置换中的比较研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 554-559.
[11] 郭璐琦, 赵雅琦, 李霁欣, 周兰, 林金鹏, 张子砚, 李俊杰, 王少白. 免荷矫形器对膝骨关节炎的生物力学影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 560-565.
[12] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[13] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[14] 邬春虎, 马玉海, 陈长松, 尹华东, 朱晓峰, 何剑星, 刘彧. 冲击波联合富血小板血浆对骨关节炎软骨损伤的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(03): 334-339.
[15] 易和强, 邓志刚. 13例化脓性肋软骨炎的诊治体会[J]. 中华胸部外科电子杂志, 2023, 10(03): 176-179.
阅读次数
全文


摘要