切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 93 -97. doi: 10.3877/cma.j.issn.1674-134X.2023.01.013

综述

3D打印技术在膝关节置换翻修术中的应用研究进展
王鑫光1, 李杨1, 何宜蓁1, 田华1,()   
  1. 1. 100191 北京大学第三医院骨科,骨与关节精准医学教育部工程研究中心
  • 收稿日期:2022-02-26 出版日期:2023-02-01
  • 通信作者: 田华
  • 基金资助:
    北京市自然科学基金(23G12187)

Progress in application of 3D printing technology in revision knee arthroplasty

Xinguang Wang1, Yang Li1, Yizhen He1, Hua Tian1,()   

  1. 1. Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
  • Received:2022-02-26 Published:2023-02-01
  • Corresponding author: Hua Tian
引用本文:

王鑫光, 李杨, 何宜蓁, 田华. 3D打印技术在膝关节置换翻修术中的应用研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(01): 93-97.

Xinguang Wang, Yang Li, Yizhen He, Hua Tian. Progress in application of 3D printing technology in revision knee arthroplasty[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(01): 93-97.

由于骨缺损、感染等问题,膝关节置换翻修术的难度较大。近年来,3D打印技术逐渐被应用于膝关节置换翻修术,应用方向涵盖术前实体模型、手术截骨导板、骨水泥占位器、骨缺损填充物等。本文对3D打印技术在膝关节置换翻修术中的应用研究进展进行综述和展望,为后续研究提供参考。

Revision knee arthroplasty is a complex surgical procedure due to problems such as bone defects and infection. In recent years, 3D printing technology has been gradually applied in revision of knee arthroplasty, including preoperative templates, osteotomy guide plates, bone cement spacers, and 3D printed implants. The application of 3D printing technology in revision knee arthroplasty is reviewed and prospected to provide references for subsequent research in the future.

[1]
Schwartz AM, Farley KX, Guild GN, et al. Projections and epidemiology of revision hip and knee arthroplasty in the United States to 2030[J]. J Arthroplasty, 2020, 35(6S): S79-S85.
[2]
Lei PF, Hu RY, Hu YH. Bone defects in revision total knee arthroplasty and management[J]. Orthop Surg, 2019, 11(1): 15-24.
[3]
Shafaghi R, Rodriguez O, Schemitsch EH, et al. A review of materials for managing bone loss in revision total knee arthroplasty [J/OL]. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109941. DOI: 10.1016/j.msec.2019.109941.
[4]
Malik HH, Darwood ARJ, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications[J]. J Surg Res, 2015, 199(2): 512-522.
[5]
Sculco PK, Abdel MP, Hanssen AD, et al. The management of bone loss in revision total knee arthroplasty: rebuild, reinforce, and augment[J]. Bone Joint J, 2016, 98-B(1 Suppl A): 120-124.
[6]
段亮,时亮,徐洪海,等. 3D打印技术联合细菌培养在感染性膝关节假体二期翻修术中的应用[J]. 中华实用诊断与治疗杂志2019, 33(7): 665-667.
[7]
李杨,田华,张克. 3D打印技术在骨科膝关节置换术教学中的应用[J]. 中华医学教育杂志2018, 38(5): 734-738.
[8]
梁宇鹏,田华. 个性化截骨工具用于全膝关节置换术的研究进展[J]. 中华医学杂志2019, 99(1): 75-78.
[9]
Wynn Jones H, Chan W, Harrison T, et al. Revision of medial Oxford unicompartmental knee replacement to a total knee replacement: similar to a primary?[J]. Knee, 2012, 19(4): 339-343.
[10]
León-Muñoz VJ, Parrinello A, López-López M, et al. Revision of total knee arthroplasty with the use of patient-specific instruments: an alternative surgical technique[J]. Expert Rev Med Devices, 2020, 17(8): 795-806.
[11]
Kerens B, Boonen B, Schotanus M, et al. Patient-specific guide for revision of medial unicondylar knee arthroplasty to total knee arthroplasty: beneficial first results of a new operating technique performed on 10 patients[J]. Acta Orthop, 2013, 84(2): 165-169.
[12]
Schotanus MGM, Thijs E, Boonen B, et al. Revision of partial knee to total knee arthroplasty with use of patient-specific instruments results in acceptable femoral rotation[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(6): 1656-1661.
[13]
Abdel MP, Barreira P, Battenberg A, et al. Hip and knee section, treatment, two-stage exchange spacer-related: proceedings of international consensus on Orthopedic infections[J]. J Arthroplasty, 2019, 34(2S): S427-S438.
[14]
张强,金志刚,周勇刚,等. 抗生素骨水泥占位器治疗髋和膝关节置换术后感染的研究进展[J/CD]. 中华关节外科杂志(电子版), 2008, 2(5): 572-577.
[15]
王宏,伍权,汤耿,等. 个性化膝关节抗生素骨水泥占位器的设计及临床应用[J]. 中国组织工程研究2020, 24(6):821-826.
[16]
Kong L, Mei J, Ge W, et al. Application of 3D printing-assisted articulating spacer in two-stage revision surgery for periprosthetic infection after total knee arthroplasty: a retrospective observational study[J/OL]. Biomed Res Int, 2021, 2021: 3948638. DOI: 10.1155/2021/3948638.
[17]
孙孟帅,曹晓瑞,闫昭,等. 非骨水泥型膝关节假体的临床应用进展[J]. 中华骨与关节外科杂志2018, 11(3): 233-236.
[18]
Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)[J]. J Mech Behav Biomed Mater, 2010, 3(3): 249-259.
[19]
Ran Q, Yang W, Hu Y, et al. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes[J]. J Mech Behav Biomed Mater, 2018, 84: 1-11.
[20]
Denehy KM, Abhari S, Krebs VE, et al. Metaphyseal fixation using highly porous cones in revision total knee arthroplasty: minimum two year follow up study[J]. J Arthroplasty, 2019, 34(10): 2439-2443.
[21]
Remily EA, Dávila Castrodad IM, Mohamed NS, et al. Short-term outcomes of 3D-printed titanium metaphyseal cones in revision total knee arthroplasty[J]. Orthopedics, 2021, 44(1): 43-47.
[22]
Tetreault MW, Perry KI, Pagnano MW, et al. Excellent two-year survivorship of 3D-printed metaphyseal cones in revision total knee arthroplasty[J]. Bone Joint J, 2020, 102-B(6_Supple_A): 107-115.
[23]
You JS, Wright AR, Hasegawa I, et al. Addressing large tibial osseous defects in primary total knee arthroplasty using porous tantalum cones[J]. Knee, 2019, 26(1): 228-239.
[24]
刘胜厚,殷庆丰,刘文广,等. 个体化定制cage结合打压植骨处理膝关节翻修术中严重骨缺损一例报道[J/CD]. 中华关节外科杂志(电子版), 2013, 7(6): 867-869.
[25]
Yin Q, Liu W, Wang S. Application of customized augments fabricated by rapid prototyping for severe bone defects of the knee [J]. Chin Med J (Engl), 2014, 127(15): 2870-2871.
[26]
Cherny AA, Kovalenko AN, Bilyk SS, et al. Early outcomes of patient-specific modular cones for substitution of methaphysial and diaphysial bone defects in revision knee arthroplasty[J]. Traumatol Orthop Russ, 2019, 25(2): 9-18.
[27]
Jing Z, Zhang T, Xiu P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review [J/OL]. Biomed Mater, 2020, 15(5): 052003. DOI: 10.1088/1748-605X/ab9078.
[28]
张腾,刘忠军. 骨科内植物的非金属涂层研究进展[J]. 中华医学杂志2017, 97(17): 1357-1360.
[29]
Xiu P, Jia Z, Lv J, et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone In-growth patterns and interlocked bone/implant interface[J]. ACS Appl Mater Interfaces, 2016, 8(28): 17964-17975.
[30]
Yang H, Zhu Q, Qi H, et al. A facile flow-casting production of bioactive glass coatings on porous titanium for bone tissue engineering [J/OL]. Materials (Basel), 2018, 11(9): 1540. DOI: 10.3390/ma11091540.
[31]
Lv J, Xiu P, Tan J, et al. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue [J/OL]. Biomed Mater, 2015, 10(3): 035013. DOI: 10.1088/1748-6041/10/3/035013.
[32]
Liu H, Li W, Liu C, et al. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti6Al4V scaffolds for the promotion of angiogenesis, osseointegration and bone in growth [J/OL]. Biofabrication, 2016, 8(4): 045012. DOI: 10.1088/1758-5090/8/4/045012.
[33]
Maharubin S, Hu Y, Sooriyaarachchi D, et al. Laser engineered net shaping of antimicrobial and biocompatible titanium-silver alloys [J/OL]. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110059. DOI: 10.1016/j.msec.2019.110059.
[34]
Rifai A, Tran N, Reineck P, et al. Engineering the interface: nanodiamond coating on 3D-printed titanium promotes mammalian cell growth and inhibits Staphylococcus aureus colonization[J]. ACS Appl Mater Interfaces, 2019, 11(27): 24588-24597.
[35]
郭金凤,赵侠,许俊羽,等. 含庆大霉素羟基磷灰石涂层假体的体外药物释放试验的药物浓度监测[J]. 中国医院用药评价与分析2008, 8(8): 602-603.
[36]
Zhang T, Zhou W, Jia Z, et al. Polydopamine-assisted functionalization of heparin and vancomycin onto microarc-oxidized 3D printed porous Ti6Al4V for improved hemocompatibility, osteogenic and anti-infection potencies[J]. Sci China Mater, 2018, 61(4): 579-592.
[1] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[2] 郭艳波, 马亮, 李刚, 阎伟, 骆帝, 岳亮, 吴伟山. 全膝关节置换术后胫股关节脱位的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 658-671.
[3] 赵飞鸿, 陈颖杰, 林静芳, 郑晓春, 廖燕凌. 超声引导下周围神经阻滞对髋膝关节置换术后恢复的影响[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 457-468.
[4] 高小康, 张净宇, 刘金伟, 田东牧, 胡永成, 徐卫国. 连接型人工膝关节假体运动和负重模式的演变和进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 505-516.
[5] 杨滢甄, 黄子荣, 梁家敏, 黄晓芳, 胡艳, 朱伟民. 膝关节前交叉韧带重建术前康复治疗的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 538-544.
[6] 蔡雨琦, 史尉利, 陶立元, 曹建夫, 崔国庆, 杨渝平. 支持带松解联合外侧成形治疗髌骨外侧过度挤压综合征[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 186-192.
[7] 宇文培之, 程鑫群, 雷翔, 张晓娟, 朱燕宾, 吕红芝, 陈伟, 张英泽. 肩胛骨三角支点三角区的三维测量及形态学分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 78-85.
[8] 韩伟峰, 王典, 陈艺丹, 曾峥. 关节镜下半月板成形术与康复训练治疗中年退行性内侧半月板撕裂的疗效比较[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 134-140.
[9] 高瑞, 康迪斯, 秦蘅, 胡月明, 初同伟, 代丽. 加速康复管理改善膝关节置换术后肺部感染并发症和疗效的Meta分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 234-237.
[10] 王增萌, 彭春辉, 吴东阳, 王凯, 闫俊, 黄心洁, 陈亚军. 先天性胆总管囊肿术后吻合口狭窄/肝内胆管结石的腹腔镜再手术经验[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(02): 111-115.
[11] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[12] 宋庆成, 郑占乐, 王天瑞, 王宇钏, 张凯旋, 纳静, 蔚佳昊, 杨思繁, 宋九宏, 张英泽. “人老膝不老”:膝关节健康管理的全方位探索与实践[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 321-324.
[13] 郑占乐, 王宇钏, 蔚佳昊, 宋庆成, 张凯旋, 纳静, 王天瑞, 宋九宏, 张英泽, 王娟. 保膝须“开膝”——“开膝”在膝骨关节炎中的临床应用价值[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 325-330.
[14] 王浩汀, 尚运涛, 曹光, 张延祠, 李军勇. 胫骨高位截骨联合关节镜与单髁置换治疗单间室膝关节骨性关节炎的临床疗效比较[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 229-236.
[15] 于晓光, 秦永辉, 李佳, 贾国兴, 李军, 赵振栓, 刘国彬. 人工单髁置换术治疗膝关节内侧间室骨关节炎合并前交叉韧带功能不良的近期疗效[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 337-342.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?