[1] |
Schwartz AM, Farley KX, Guild GN, et al. Projections and epidemiology of revision hip and knee arthroplasty in the United States to 2030[J]. J Arthroplasty, 2020, 35(6S): S79-S85.
|
[2] |
Lei PF, Hu RY, Hu YH. Bone defects in revision total knee arthroplasty and management[J]. Orthop Surg, 2019, 11(1): 15-24.
|
[3] |
Shafaghi R, Rodriguez O, Schemitsch EH, et al. A review of materials for managing bone loss in revision total knee arthroplasty [J/OL]. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109941. DOI: 10.1016/j.msec.2019.109941.
|
[4] |
Malik HH, Darwood ARJ, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications[J]. J Surg Res, 2015, 199(2): 512-522.
|
[5] |
Sculco PK, Abdel MP, Hanssen AD, et al. The management of bone loss in revision total knee arthroplasty: rebuild, reinforce, and augment[J]. Bone Joint J, 2016, 98-B(1 Suppl A): 120-124.
|
[6] |
段亮,时亮,徐洪海,等. 3D打印技术联合细菌培养在感染性膝关节假体二期翻修术中的应用[J]. 中华实用诊断与治疗杂志,2019, 33(7): 665-667.
|
[7] |
李杨,田华,张克. 3D打印技术在骨科膝关节置换术教学中的应用[J]. 中华医学教育杂志,2018, 38(5): 734-738.
|
[8] |
梁宇鹏,田华. 个性化截骨工具用于全膝关节置换术的研究进展[J]. 中华医学杂志,2019, 99(1): 75-78.
|
[9] |
Wynn Jones H, Chan W, Harrison T, et al. Revision of medial Oxford unicompartmental knee replacement to a total knee replacement: similar to a primary?[J]. Knee, 2012, 19(4): 339-343.
|
[10] |
León-Muñoz VJ, Parrinello A, López-López M, et al. Revision of total knee arthroplasty with the use of patient-specific instruments: an alternative surgical technique[J]. Expert Rev Med Devices, 2020, 17(8): 795-806.
|
[11] |
Kerens B, Boonen B, Schotanus M, et al. Patient-specific guide for revision of medial unicondylar knee arthroplasty to total knee arthroplasty: beneficial first results of a new operating technique performed on 10 patients[J]. Acta Orthop, 2013, 84(2): 165-169.
|
[12] |
Schotanus MGM, Thijs E, Boonen B, et al. Revision of partial knee to total knee arthroplasty with use of patient-specific instruments results in acceptable femoral rotation[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(6): 1656-1661.
|
[13] |
Abdel MP, Barreira P, Battenberg A, et al. Hip and knee section, treatment, two-stage exchange spacer-related: proceedings of international consensus on Orthopedic infections[J]. J Arthroplasty, 2019, 34(2S): S427-S438.
|
[14] |
张强,金志刚,周勇刚,等. 抗生素骨水泥占位器治疗髋和膝关节置换术后感染的研究进展[J/CD]. 中华关节外科杂志(电子版), 2008, 2(5): 572-577.
|
[15] |
王宏,伍权,汤耿,等. 个性化膝关节抗生素骨水泥占位器的设计及临床应用[J]. 中国组织工程研究,2020, 24(6):821-826.
|
[16] |
Kong L, Mei J, Ge W, et al. Application of 3D printing-assisted articulating spacer in two-stage revision surgery for periprosthetic infection after total knee arthroplasty: a retrospective observational study[J/OL]. Biomed Res Int, 2021, 2021: 3948638. DOI: 10.1155/2021/3948638.
|
[17] |
孙孟帅,曹晓瑞,闫昭,等. 非骨水泥型膝关节假体的临床应用进展[J]. 中华骨与关节外科杂志,2018, 11(3): 233-236.
|
[18] |
Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)[J]. J Mech Behav Biomed Mater, 2010, 3(3): 249-259.
|
[19] |
Ran Q, Yang W, Hu Y, et al. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes[J]. J Mech Behav Biomed Mater, 2018, 84: 1-11.
|
[20] |
Denehy KM, Abhari S, Krebs VE, et al. Metaphyseal fixation using highly porous cones in revision total knee arthroplasty: minimum two year follow up study[J]. J Arthroplasty, 2019, 34(10): 2439-2443.
|
[21] |
Remily EA, Dávila Castrodad IM, Mohamed NS, et al. Short-term outcomes of 3D-printed titanium metaphyseal cones in revision total knee arthroplasty[J]. Orthopedics, 2021, 44(1): 43-47.
|
[22] |
Tetreault MW, Perry KI, Pagnano MW, et al. Excellent two-year survivorship of 3D-printed metaphyseal cones in revision total knee arthroplasty[J]. Bone Joint J, 2020, 102-B(6_Supple_A): 107-115.
|
[23] |
You JS, Wright AR, Hasegawa I, et al. Addressing large tibial osseous defects in primary total knee arthroplasty using porous tantalum cones[J]. Knee, 2019, 26(1): 228-239.
|
[24] |
刘胜厚,殷庆丰,刘文广,等. 个体化定制cage结合打压植骨处理膝关节翻修术中严重骨缺损一例报道[J/CD]. 中华关节外科杂志(电子版), 2013, 7(6): 867-869.
|
[25] |
Yin Q, Liu W, Wang S. Application of customized augments fabricated by rapid prototyping for severe bone defects of the knee [J]. Chin Med J (Engl), 2014, 127(15): 2870-2871.
|
[26] |
Cherny AA, Kovalenko AN, Bilyk SS, et al. Early outcomes of patient-specific modular cones for substitution of methaphysial and diaphysial bone defects in revision knee arthroplasty[J]. Traumatol Orthop Russ, 2019, 25(2): 9-18.
|
[27] |
Jing Z, Zhang T, Xiu P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review [J/OL]. Biomed Mater, 2020, 15(5): 052003. DOI: 10.1088/1748-605X/ab9078.
|
[28] |
张腾,刘忠军. 骨科内植物的非金属涂层研究进展[J]. 中华医学杂志,2017, 97(17): 1357-1360.
|
[29] |
Xiu P, Jia Z, Lv J, et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone In-growth patterns and interlocked bone/implant interface[J]. ACS Appl Mater Interfaces, 2016, 8(28): 17964-17975.
|
[30] |
Yang H, Zhu Q, Qi H, et al. A facile flow-casting production of bioactive glass coatings on porous titanium for bone tissue engineering [J/OL]. Materials (Basel), 2018, 11(9): 1540. DOI: 10.3390/ma11091540.
|
[31] |
Lv J, Xiu P, Tan J, et al. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti 6Al 4V scaffolds incorporating growth factor-doped fibrin glue [J/OL]. Biomed Mater, 2015, 10(3): 035013. DOI: 10.1088/1748-6041/10/3/035013.
|
[32] |
Liu H, Li W, Liu C, et al. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti 6Al 4V scaffolds for the promotion of angiogenesis, osseointegration and bone in growth [J/OL]. Biofabrication, 2016, 8(4): 045012. DOI: 10.1088/1758-5090/8/4/045012.
|
[33] |
Maharubin S, Hu Y, Sooriyaarachchi D, et al. Laser engineered net shaping of antimicrobial and biocompatible titanium-silver alloys [J/OL]. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110059. DOI: 10.1016/j.msec.2019.110059.
|
[34] |
Rifai A, Tran N, Reineck P, et al. Engineering the interface: nanodiamond coating on 3D-printed titanium promotes mammalian cell growth and inhibits Staphylococcus aureus colonization[J]. ACS Appl Mater Interfaces, 2019, 11(27): 24588-24597.
|
[35] |
郭金凤,赵侠,许俊羽,等. 含庆大霉素羟基磷灰石涂层假体的体外药物释放试验的药物浓度监测[J]. 中国医院用药评价与分析,2008, 8(8): 602-603.
|
[36] |
Zhang T, Zhou W, Jia Z, et al. Polydopamine-assisted functionalization of heparin and vancomycin onto microarc-oxidized 3D printed porous Ti6Al4V for improved hemocompatibility, osteogenic and anti-infection potencies[J]. Sci China Mater, 2018, 61(4): 579-592.
|