切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 93 -97. doi: 10.3877/cma.j.issn.1674-134X.2023.01.013

综述

3D打印技术在膝关节置换翻修术中的应用研究进展
王鑫光1, 李杨1, 何宜蓁1, 田华1,()   
  1. 1. 100191 北京大学第三医院骨科,骨与关节精准医学教育部工程研究中心
  • 收稿日期:2022-02-26 出版日期:2023-02-01
  • 通信作者: 田华
  • 基金资助:
    北京市自然科学基金(23G12187)

Progress in application of 3D printing technology in revision knee arthroplasty

Xinguang Wang1, Yang Li1, Yizhen He1, Hua Tian1,()   

  1. 1. Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
  • Received:2022-02-26 Published:2023-02-01
  • Corresponding author: Hua Tian
引用本文:

王鑫光, 李杨, 何宜蓁, 田华. 3D打印技术在膝关节置换翻修术中的应用研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(01): 93-97.

Xinguang Wang, Yang Li, Yizhen He, Hua Tian. Progress in application of 3D printing technology in revision knee arthroplasty[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(01): 93-97.

由于骨缺损、感染等问题,膝关节置换翻修术的难度较大。近年来,3D打印技术逐渐被应用于膝关节置换翻修术,应用方向涵盖术前实体模型、手术截骨导板、骨水泥占位器、骨缺损填充物等。本文对3D打印技术在膝关节置换翻修术中的应用研究进展进行综述和展望,为后续研究提供参考。

Revision knee arthroplasty is a complex surgical procedure due to problems such as bone defects and infection. In recent years, 3D printing technology has been gradually applied in revision of knee arthroplasty, including preoperative templates, osteotomy guide plates, bone cement spacers, and 3D printed implants. The application of 3D printing technology in revision knee arthroplasty is reviewed and prospected to provide references for subsequent research in the future.

[1]
Schwartz AM, Farley KX, Guild GN, et al. Projections and epidemiology of revision hip and knee arthroplasty in the United States to 2030[J]. J Arthroplasty, 2020, 35(6S): S79-S85.
[2]
Lei PF, Hu RY, Hu YH. Bone defects in revision total knee arthroplasty and management[J]. Orthop Surg, 2019, 11(1): 15-24.
[3]
Shafaghi R, Rodriguez O, Schemitsch EH, et al. A review of materials for managing bone loss in revision total knee arthroplasty [J/OL]. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109941. DOI: 10.1016/j.msec.2019.109941.
[4]
Malik HH, Darwood ARJ, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications[J]. J Surg Res, 2015, 199(2): 512-522.
[5]
Sculco PK, Abdel MP, Hanssen AD, et al. The management of bone loss in revision total knee arthroplasty: rebuild, reinforce, and augment[J]. Bone Joint J, 2016, 98-B(1 Suppl A): 120-124.
[6]
段亮,时亮,徐洪海,等. 3D打印技术联合细菌培养在感染性膝关节假体二期翻修术中的应用[J]. 中华实用诊断与治疗杂志2019, 33(7): 665-667.
[7]
李杨,田华,张克. 3D打印技术在骨科膝关节置换术教学中的应用[J]. 中华医学教育杂志2018, 38(5): 734-738.
[8]
梁宇鹏,田华. 个性化截骨工具用于全膝关节置换术的研究进展[J]. 中华医学杂志2019, 99(1): 75-78.
[9]
Wynn Jones H, Chan W, Harrison T, et al. Revision of medial Oxford unicompartmental knee replacement to a total knee replacement: similar to a primary?[J]. Knee, 2012, 19(4): 339-343.
[10]
León-Muñoz VJ, Parrinello A, López-López M, et al. Revision of total knee arthroplasty with the use of patient-specific instruments: an alternative surgical technique[J]. Expert Rev Med Devices, 2020, 17(8): 795-806.
[11]
Kerens B, Boonen B, Schotanus M, et al. Patient-specific guide for revision of medial unicondylar knee arthroplasty to total knee arthroplasty: beneficial first results of a new operating technique performed on 10 patients[J]. Acta Orthop, 2013, 84(2): 165-169.
[12]
Schotanus MGM, Thijs E, Boonen B, et al. Revision of partial knee to total knee arthroplasty with use of patient-specific instruments results in acceptable femoral rotation[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(6): 1656-1661.
[13]
Abdel MP, Barreira P, Battenberg A, et al. Hip and knee section, treatment, two-stage exchange spacer-related: proceedings of international consensus on Orthopedic infections[J]. J Arthroplasty, 2019, 34(2S): S427-S438.
[14]
张强,金志刚,周勇刚,等. 抗生素骨水泥占位器治疗髋和膝关节置换术后感染的研究进展[J/CD]. 中华关节外科杂志(电子版), 2008, 2(5): 572-577.
[15]
王宏,伍权,汤耿,等. 个性化膝关节抗生素骨水泥占位器的设计及临床应用[J]. 中国组织工程研究2020, 24(6):821-826.
[16]
Kong L, Mei J, Ge W, et al. Application of 3D printing-assisted articulating spacer in two-stage revision surgery for periprosthetic infection after total knee arthroplasty: a retrospective observational study[J/OL]. Biomed Res Int, 2021, 2021: 3948638. DOI: 10.1155/2021/3948638.
[17]
孙孟帅,曹晓瑞,闫昭,等. 非骨水泥型膝关节假体的临床应用进展[J]. 中华骨与关节外科杂志2018, 11(3): 233-236.
[18]
Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)[J]. J Mech Behav Biomed Mater, 2010, 3(3): 249-259.
[19]
Ran Q, Yang W, Hu Y, et al. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes[J]. J Mech Behav Biomed Mater, 2018, 84: 1-11.
[20]
Denehy KM, Abhari S, Krebs VE, et al. Metaphyseal fixation using highly porous cones in revision total knee arthroplasty: minimum two year follow up study[J]. J Arthroplasty, 2019, 34(10): 2439-2443.
[21]
Remily EA, Dávila Castrodad IM, Mohamed NS, et al. Short-term outcomes of 3D-printed titanium metaphyseal cones in revision total knee arthroplasty[J]. Orthopedics, 2021, 44(1): 43-47.
[22]
Tetreault MW, Perry KI, Pagnano MW, et al. Excellent two-year survivorship of 3D-printed metaphyseal cones in revision total knee arthroplasty[J]. Bone Joint J, 2020, 102-B(6_Supple_A): 107-115.
[23]
You JS, Wright AR, Hasegawa I, et al. Addressing large tibial osseous defects in primary total knee arthroplasty using porous tantalum cones[J]. Knee, 2019, 26(1): 228-239.
[24]
刘胜厚,殷庆丰,刘文广,等. 个体化定制cage结合打压植骨处理膝关节翻修术中严重骨缺损一例报道[J/CD]. 中华关节外科杂志(电子版), 2013, 7(6): 867-869.
[25]
Yin Q, Liu W, Wang S. Application of customized augments fabricated by rapid prototyping for severe bone defects of the knee [J]. Chin Med J (Engl), 2014, 127(15): 2870-2871.
[26]
Cherny AA, Kovalenko AN, Bilyk SS, et al. Early outcomes of patient-specific modular cones for substitution of methaphysial and diaphysial bone defects in revision knee arthroplasty[J]. Traumatol Orthop Russ, 2019, 25(2): 9-18.
[27]
Jing Z, Zhang T, Xiu P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review [J/OL]. Biomed Mater, 2020, 15(5): 052003. DOI: 10.1088/1748-605X/ab9078.
[28]
张腾,刘忠军. 骨科内植物的非金属涂层研究进展[J]. 中华医学杂志2017, 97(17): 1357-1360.
[29]
Xiu P, Jia Z, Lv J, et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone In-growth patterns and interlocked bone/implant interface[J]. ACS Appl Mater Interfaces, 2016, 8(28): 17964-17975.
[30]
Yang H, Zhu Q, Qi H, et al. A facile flow-casting production of bioactive glass coatings on porous titanium for bone tissue engineering [J/OL]. Materials (Basel), 2018, 11(9): 1540. DOI: 10.3390/ma11091540.
[31]
Lv J, Xiu P, Tan J, et al. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue [J/OL]. Biomed Mater, 2015, 10(3): 035013. DOI: 10.1088/1748-6041/10/3/035013.
[32]
Liu H, Li W, Liu C, et al. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti6Al4V scaffolds for the promotion of angiogenesis, osseointegration and bone in growth [J/OL]. Biofabrication, 2016, 8(4): 045012. DOI: 10.1088/1758-5090/8/4/045012.
[33]
Maharubin S, Hu Y, Sooriyaarachchi D, et al. Laser engineered net shaping of antimicrobial and biocompatible titanium-silver alloys [J/OL]. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110059. DOI: 10.1016/j.msec.2019.110059.
[34]
Rifai A, Tran N, Reineck P, et al. Engineering the interface: nanodiamond coating on 3D-printed titanium promotes mammalian cell growth and inhibits Staphylococcus aureus colonization[J]. ACS Appl Mater Interfaces, 2019, 11(27): 24588-24597.
[35]
郭金凤,赵侠,许俊羽,等. 含庆大霉素羟基磷灰石涂层假体的体外药物释放试验的药物浓度监测[J]. 中国医院用药评价与分析2008, 8(8): 602-603.
[36]
Zhang T, Zhou W, Jia Z, et al. Polydopamine-assisted functionalization of heparin and vancomycin onto microarc-oxidized 3D printed porous Ti6Al4V for improved hemocompatibility, osteogenic and anti-infection potencies[J]. Sci China Mater, 2018, 61(4): 579-592.
[1] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[2] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[3] 梁家敏, 黄子荣, 崔家鸣, 钟名金, 冯文哲, 陈康, 胡艳, 欧阳侃, 杨雷, 王大平, 王满宜, 朱伟民. 前交叉韧带保留残端重建促进膝关节功能的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 708-714.
[4] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[5] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[6] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[7] 费发珠, 张帅, 刘发蓉, 芦佳骏, 任宾, 樊海宁. 三维可视化联合术中ICG荧光引导腹腔镜肝包虫病切除术一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 577-580.
[8] 王建奇, 陈政良, 刘雨, 俞星新, 耿志达, 姜洪池, 梁英健. 基于160例患者CT三维重建的肝血管解剖变异分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 427-433.
[9] 高旭东, 王小明, 陈江明, 奚士航, 潘璇. 基于三维可视化技术的脾门区脾动脉三维分型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 434-439.
[10] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[11] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[12] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[13] 张子砚, 曾红, 许苑晶, 郭璐琦, 王金武, 王少白, 任富超, 缪伟强, 戴尅戎, 王茹. 膝关节生物力学标志物预测膝关节炎研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 315-320.
[14] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
[15] 刘新光, 杨滨, 刘晨, 王晓华, 张克. 股骨前皮质切割在前、后参考系统全膝关节置换术中发生的对比研究及锯片摆动偏差分析[J]. 中华临床医师杂志(电子版), 2023, 17(05): 507-512.
阅读次数
全文


摘要