切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 729 -734. doi: 10.3877/cma.j.issn.1674-134X.2022.06.012

基础论著

不同胫骨隧道位置对后交叉韧带杀伤角影响的定量研究
滕元君1, 谭念2, 贾更新1, 张政2, 李昌玺2, 郭来威1, 赵良功1, 夏亚一1,()   
  1. 1. 730030 兰州大学第二医院骨科
    2. 730000 兰州大学第二临床医学院
  • 收稿日期:2021-10-29 出版日期:2022-12-01
  • 通信作者: 夏亚一
  • 基金资助:
    国家自然科学基金(82060413); 兰州大学医学教育创新发展项目(lzuyxcx-2022-173); 甘肃省青年科技基金计划(21JR1RA154); 兰州大学第二医院萃英学子科研培育计划项目(CYXZ2021-17/CYXZ2021-25)

Quantitative analysis on effect of different tibial tunnel positions on killer turn of posterior cruciate ligament

Yuanjun Teng1, Nian Tan2, Gengxin Jia1, Zheng Zhang2, Changxi Li2, Laiwei Guo1, Lianggong Zhao1, Yayi Xia1,()   

  1. 1. Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China
    2. The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
  • Received:2021-10-29 Published:2022-12-01
  • Corresponding author: Yayi Xia
引用本文:

滕元君, 谭念, 贾更新, 张政, 李昌玺, 郭来威, 赵良功, 夏亚一. 不同胫骨隧道位置对后交叉韧带杀伤角影响的定量研究[J]. 中华关节外科杂志(电子版), 2022, 16(06): 729-734.

Yuanjun Teng, Nian Tan, Gengxin Jia, Zheng Zhang, Changxi Li, Laiwei Guo, Lianggong Zhao, Yayi Xia. Quantitative analysis on effect of different tibial tunnel positions on killer turn of posterior cruciate ligament[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(06): 729-734.

目的

利用计算机模拟经胫骨隧道后交叉韧带(PCL)重建,定量分析不同胫骨隧道位置对冠状与三维(3D)杀伤角的影响。

方法

基于膝关节CT数据,建立3D模型,定位PCL股骨止点和胫骨止点。参照经胫骨隧道PCL重建技术,模拟矢状面角度为50°,位置为前内侧、胫骨结节以及前外侧处的胫骨隧道。采用Rhinoceros软件测量相关数据,数据分析采用方差分析比较三种胫骨隧道位置以及不同年龄段、身高组间冠状杀伤角及3D杀伤角的差异。

结果

前内侧、胫骨结节以及前外侧冠状杀伤角分别为:(128±9)°、(146±6)°、(170±7)°;3D杀伤角分别为:(97±7)°、(104±7)°、(112±8)°,各组之间比较差异均有统计学意义(冠状杀伤角:F=3896.102, 3D杀伤角:F=1301.216,均为P < 0.001)。亚组分析显示:不同身高、年龄组间冠状杀伤角、3D杀伤角差异无统计学意义。冠状杀伤角与3D杀伤角呈线性关系,二者回归方程为?=52.67+0.35×x(x:冠状杀伤角,?:3D杀伤角)。

结论

不同胫骨隧道位置对PCL冠状杀伤角与3D杀伤角均有显著影响。采用前外侧PCL胫骨隧道可以显著增加移植物与隧道的3D杀伤角,理论上可减少移植物的磨损。

Objective

To quantitatively analyze the effects of different tibial tunnel positions on the coronal and three-dimentional(3D) "killer turn" angles based on computer simulation of the posterior cruciate ligament (PCL) reconstruction.

Methods

A 3D model of the knee joint was established using the CT data. The PCL attachment points on the femur and tibia were located. Using the transtibial technique, the tibial tunnels at the anteromedial, tibial-tubercle and anterolateral positions were simulated using a sagittal angle of 50°. All the outcomes were measured using the Rhinoceros 6.0, and data analysis was performed by chi square analysis; coronal killer turn and 3D killer turn angles of the patients with different height and age were analyzed by subgroup analysis.

Results

Different tibial tunnel positions had significant effects on the PCL coronal and 3D angles of killer turn. The coronal angles of killer turn were: (128±9)°, 146±6)°, and (170±7)° for the anteromedial, tibial-tuberosity and anterolateral tibial tunnels, respectively. The 3D angles of the killer turn were: (97±7)°, (104±7)°, and (112±8)° for the anteromedial, tibial-tuberosity and anterolateral tibial tunnels, respectively. There were statistically significant differences regarding coronal and 3D angles of the killer turn among groups (coronal angles: F=3 896.102, 3D angles: F=1 301.216, both P<0.001). Subgroup analysis showed that height and age had no statistically significant difference in the coronal and 3D angles of the killer turn. Correlation linear analysis was performed on the coronal and the 3D killer turn, and the result showed the regression equation as follows: ?=52.67+ 0.35×x(x: the coronal angle of the killer turn, ?: the 3D angle of the killer turn).

Conclusion

Different tibial tunnel positions shows significant effects on the PCL coronal and 3D angles of killer turn, and the anterolateral tibial tunnel could significantly increase the 3D angle of killer turn and theoretically reduce the graft abrasion.

图1 二维平面下胫骨隧道与移植物形成的夹角示意图。图A为冠状杀伤角;图B为矢状杀伤角
图2 膝关节中心的建立和膝关节坐标轴的建立。图A为采用最佳配合圆的方法确定胫骨近端内侧和外侧平台的中心点O;图B为建立膝关节的坐标系注:Y轴与Z轴所形成的平面为膝关节标准正位面,X轴与Z轴所形成的平面为膝关节标准侧位面
图3 PCL股骨止点的确定示意图。图A为二维平面图展示PCL股骨止点的位置;图B为三维图像呈现PCL股骨止点及PCL附着位置注:股骨止点距离Blumensaat线7 mm,到Blumensaat垂线的距离为20 mm
图4 胫骨隧道入口的选择示意图。图A中矢状面隧道与胫骨平台线始终保持50°;图B为胫骨前内侧隧道入口点;图C为胫骨结节隧道入口点;图D为胫骨前外侧入口点
表1 不同胫骨隧道的冠状和3D杀伤角[°,(±s)]
表2 年龄对冠状和3D杀伤角的亚组分析[°,(±s)]
表3 身高对冠状和3D杀伤角的亚组分析[°,(±s)]
图5 冠状杀伤角(x)与3D杀伤角(?)的线性关系
[1]
Bedi A, Musahl V, Cowan JB. Management of posterior cruciate ligament injuries:an evidence-based review[J]. J Am Acad Orthop Surg, 2016, 24(5): 277-289.
[2]
蔡伟创,徐一宏,徐卫东.后交叉韧带的解剖及病理生理与生物力学研究[J/CD].中华关节外科杂志(电子版)202115(4):470-475.
[3]
Saragaglia D, Francony F, Gaillot J, et al. Posterior cruciate ligament Reconstruction for chronic lesions: clinical experience with hamstring versus ligament advanced reinforcement system as graft[J]. Int Orthop, 2020, 44(1): 179-185.
[4]
Li Y, Zhang J, Song G, et al. The mechanism of "killer turn" causing residual laxity after transtibial posterior cruciate ligament reconstruction[J]. Asia Pac J Sports Med Arthrosc Rehabil Technol, 2016, (3):13-18.
[5]
Teng Y, Jia G, Da L, et al. The permissive safe angle of the ribial runnel in transtibial posterior cruciate ligament reconstruction: a three-dimensional simulation study[J]. Orthop Surg, 2022, 14(6):1193-1202.
[6]
Berg EE. Posterior cruciate ligament tibial inlay reconstruction[J]. Arthroscopy, 1995, 11(1): 69-76.
[7]
Markolf KL, Zemanovic JR, Mcallister DR. Cyclic loading of posterior cruciate ligament replacements fixed with tibial tunnel and tibial inlay methods[J]. J Bone Joint Surg Am, 2002, 84(4): 518-524.
[8]
Bergfeld JA, Mcallister DR, Parker RD, et al. A biomechanical comparison of posterior cruciate ligament reconstruction techniques[J]. Am J Sports Med, 2001, 29(2): 129-136.
[9]
Ohkoshi Y, Nagasaki S, Yamamoto K, et al. Description of a new endoscopic posterior cruciate ligament Reconstruction and comparison with a 2-incision technique[J]. Arthroscopy, 2003, 19(8): 825-832.
[10]
Kim SJ, Shin JW, Lee CH, et al. Biomechanical comparisons of three different tibial tunnel directions in posterior cruciate ligament reconstruction[J]. Arthroscopy, 2005, 21(3): 286-293.
[11]
Akagi M, Oh M, Nonaka T, et al. An anteroposterior axis of the tibia for total knee arthroplast[J]. Clin Orthop Relat Res, 2004, (420): 213-219.
[12]
Teng Y, Mizu-Uchi H, Xia Y, et al. Axial but not sagittal hinge axis affects posterior tibial slope in medial open-wedge high tibial osteotomy: a 3-dimensional surgical simulation study[J]. Arthroscopy, 2021, 37(7): 2191-2201.
[13]
Matziolis G, Krocker D, Weiss U, et al. A prospective,randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation[J]. J Bone Joint Surg Am, 2007, 89(2): 236-243.
[14]
Moon SW, Park SH, Lee BH, et al. The effect of hinge position on posterior tibial slope in medial open-wedge high tibial osteotomy[J]. Arthroscopy, 2015, 31(6): 1128-1133.
[15]
Johannsen AM, Anderson CJ, Wijdicks CA, et al. Radiographic landmarks for tunnel positioning in posterior cruciate ligament reconstructions[J]. Am J Sports Med, 2013, 41(1): 35-42.
[16]
Teng YJ, Zhang XH, Ma CW, et al. Evaluation of the permissible maximum angle of the tibial tunnel in transtibial anatomic posterior cruciate ligament reconstruction by computed tomography[J]. Arch Orthop Trauma Surg, 2019, 139(4): 547-552.
[17]
Lynch TB, Chahla J, Nuelle CW. Anatomy and biomechanics of the posterior cruciate ligament[J]. J Knee Surg, 2021, 34(5): 499-508.
[18]
陈百成,闫昌葆.后交叉韧带重建中"成角效应"的研究现状[J/CD].中华关节外科杂志(电子版)20093(2):242-245.
[19]
Teng Y, Guo L, Wu M, et al. MRI analysis of tibial PCL attachment in a large population of adult patients: reference data for anatomic PCL reconstruction[J]. BMC Musculoskelet Disord, 2016, 17(1): 384.
[20]
Teng Y, Da L, Jia G, et al. What Is the maximum tibial tunnel angle for transtibial PCL reconstruction? A comparison based on virtual radiographs, CT Images, and 3D knee models[J]. Clin Orthop Relat Res, 2022, 480(5): 918-928.
[21]
Huang TW, Wang CJ, Weng LH, et al. Reducing the "killer turn" in posterior cruciate ligament reconstruction[J]. Arthroscopy, 2003, 19(7): 712-716.
[22]
Ahn JH, Bae JH, Lee YS, et al. An anatomical and biomechanical comparison of anteromedial and anterolateral approaches for tibial tunnel of posterior cruciate ligament reconstruction:evaluation of the widening effect of the anterolateral approach[J]. Am J Sports Med, 2009, 37(9): 1777-1783.
[1] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[2] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[3] 刘瀚忠, 黄生辉, 万俊明, 李家春, 舒涛. 髌上入路和髌旁外侧入路髓内钉治疗胫骨骨折疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 795-801.
[4] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[5] 杨国栋, 张辉, 郭珈, 曲迪, 张静, 戚超. 外侧半月板后角撕裂是否修复的术后疗效对比[J]. 中华关节外科杂志(电子版), 2023, 17(05): 619-624.
[6] 夏效泳, 王立超, 朱治国, 丛云海, 史宗新. 深度塌陷性胫骨平台骨折的形态特点和治疗策略[J]. 中华关节外科杂志(电子版), 2023, 17(05): 625-632.
[7] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[8] 苏航. 本体感觉训练促进半月板损伤术后膝关节功能康复[J]. 中华关节外科杂志(电子版), 2023, 17(03): 435-438.
[9] 吴萍, 刘永林, 陈能彬, 季明军, 万晓波. 应用皮瓣联合负压封闭引流及灌洗引流治疗胫骨骨折术后钢板外露的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 317-320.
[10] 费发珠, 张帅, 刘发蓉, 芦佳骏, 任宾, 樊海宁. 三维可视化联合术中ICG荧光引导腹腔镜肝包虫病切除术一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 577-580.
[11] 李映安, 晋云, 储心昀, 胡苹苹, 王峻峰. 混合现实技术在腹腔镜肝切除术中导航的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 401-406.
[12] 王建奇, 陈政良, 刘雨, 俞星新, 耿志达, 姜洪池, 梁英健. 基于160例患者CT三维重建的肝血管解剖变异分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 427-433.
[13] 高旭东, 王小明, 陈江明, 奚士航, 潘璇. 基于三维可视化技术的脾门区脾动脉三维分型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 434-439.
[14] 张镇斌, 闫兆龙, 王功腾, 张文琦, 王旭凤, 李广兴, 孙华强, 李树锋. 关节镜对胫骨高位截骨术治疗膝骨关节炎的效果研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 218-225.
[15] 宋碧萱, 郭海川, 韩子钰, 周瑞娟, 李承思, 姬晨妮. 开放式楔形胫骨高位截骨术后下肢深静脉血栓形成的危险因素分析及预测列线图的构建[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 226-232.
阅读次数
全文


摘要