切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (06) : 818 -826. doi: 10.3877/cma.j.issn.1674-134X.2023.06.009

荟萃分析

开放性楔形胫骨高位截骨术不同植入材料的Meta分析
罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志()   
  1. 201805 上海市嘉定区安亭医院
  • 收稿日期:2022-12-15 出版日期:2023-12-01
  • 通信作者: 冯志
  • 基金资助:
    上海市嘉定区卫生健康委员会科研项目(2021-QN-ZYY-04)

Meta analysis on implantation of different grafting materials in open wedge high tibial osteotomy

Wanglin Luo, Chuanjun Yang, Guoxing Xu, Jianguo Yu, Weidong Sun, Wenjuan Yan, Zhi Feng()   

  1. Shanghai Jiading District Anting Hospital, Shanghai 201805, China
  • Received:2022-12-15 Published:2023-12-01
  • Corresponding author: Zhi Feng
引用本文:

罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.

Wanglin Luo, Chuanjun Yang, Guoxing Xu, Jianguo Yu, Weidong Sun, Wenjuan Yan, Zhi Feng. Meta analysis on implantation of different grafting materials in open wedge high tibial osteotomy[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(06): 818-826.

目的

目前开放性楔形胫骨高位截骨术已被广泛应用于内侧膝关节骨关节炎的治疗,并取得了较好的临床疗效,但开放性楔形胫骨高位截骨术中植入自体骨与其他植骨材料的对比疗效尚缺乏循证医学证据。系统评价开放性楔形胫骨高位截骨术中植入自体骨与其他植骨材料的疗效。

方法

检索中国生物医学文献、中国知网、万方、维普、荷兰医学文摘(Embase)、PubMed、Cochrane图书馆、Web of Science、中国生物医学文献数据库(CBM),检索时间均为建库至2022年11月。查找所有开放性楔形胫骨高位截骨术中植入自体骨与其他植骨材料的对照研究。对文献的研究类型、研究对象、干预措施及评价指标等进行综合筛选、质量评价和数据提取,并应用Revman Manager 5.4软件进行Meta分析。主要分析的指标是胫骨高位截骨术的手术时间、愈合时间、术后股骨胫骨角[股骨解剖轴与胫骨解剖轴的外侧夹角(FTA)]、术后膝关节协会评分(KSS)、术后特种外科医院(HSS)膝关节功能评分、延迟愈合率、术后外侧铰链骨折和并发症。

结果

共纳入9篇文献,共437例胫骨高位截骨术膝关节病例,其中203例行自体骨植骨,234例行同种异体骨或人工骨植骨。Meta分析结果显示:自体骨组手术时间[均数差(MD)=13.94,95%置信区间(CI)(11.39,16.50),P<0. 001]长于其他植骨材料组。自体组的愈合时间[标准化均数差(SMD)=-0.45,95% CI(-0.87,-0.02),Z=2.04,P=0. 04]短于其他植骨材料组。术后FTA(股骨胫骨角)[MD=0.02,95% CI(-0.33,0.37),Z=0.11,P=0. 91]、术后KSS膝关节评分[MD=2.16,95% CI(-3.17,7.49),P=0.43]、术后HSS膝关节功能评分[MD=0.25,95% CI(-0.38,0.87),P=0.44]、延迟愈合率[RD=-0.02,95% CI(-0.08,0.05),Z =0.51,P=0.61]、术后外侧铰链骨折[RR=0.72,95% CI(0.42,1.23),P=0.23]和并发症[RD=-0.00,95% CI(-0.06,0.06),P=0.98]两组差异均无统计学意义。

结论

自体骨在开放性楔形胫骨高位截骨术中能够更好地促进截骨端的愈合,且不会增加并发症的发生,但术中手术时间也相应增加,建议常规使用自体骨植骨更好地促进合页端的愈合。但由于本研究纳入文献的数量和质量有限,上述结论仍需大样本、高质量的前瞻性随机对照研究进一步验证。

Objective

By correcting the lower extremity alignment of the proximal tibial osteotomy, the force of the knee osteoarthritis can be redistributed to the healthy part of the knee joint, so as to slow down the degenerative changes of the knee joint, which is beneficial to the bone joint with malalignment. inflammation treatment. It is an important method for the treatment of knee osteoarthritis.

Methods

By searching Chinese biomedical literature, China national knowledge infrastructure(CNKI), Wanfang, Database for Chinese Technical Periodicals(VIP), Excerpta Medica Database(Embase), PubMed, Cochrane Library, Web of Science and China Biology Medicine disc(CBM), the retrieval time was from the establishment of the database to November 2022. All comparative studies comparing autogenous bone graft with other bone graft materials in open wedge high tibial osteotomy were searched. The research types, subjects, interventions and evaluation indicators of the literature were comprehensively screened, the quality of the literature was evaluated and the data were extracted. Revman Manager5.4 software was used for meta-analysis. The primary outcome measures were operation time, healing time, postoperative femoro tibial angle (FTA), postoperative Knee Society score (KSS) knee score, postoperative Hospital for Special Surgery (HSS) knee function score, delayed union rate, postoperative lateral hinge fracture, and complications.

Results

A total of nine articles were included, with a total of 437 cases of knee joints undergoing high tibial osteotomy, of which 203 cases underwent autograft and 234 cases underwent allograft or artificial bone graft. The results of meta-analysis showed that the operative time of the autogenous bone group was longer than that of the other bone graft groups[mean difference(MD)=13.94, 95% confidence interval(CI) (11.39, 16.50), P< 0.001]. The healing time of autogenous group was shorter than that of other bone graft groups[standardized mean difference(SMD)=-0.45, 95%CI (-0.87, -0.02), Z =2.04, P=0.04]. Postoperative FTA [MD=0.02, 95%CI: (-0.33, 0.37), Z=0.11, P=0.91], postoperative KSS knee score [MD=2.16, 95%CI (-3.17, 7.49), P=0.43], postoperative HSS knee function score [MD=0.25, 95%CI (-0.38, 0.87), P=0.44], delayed healing rate [risk difference(RD) =-0.02, 95%CI(-0.08, 0.05), Z=0.51, P=0.61], postoperative lateral hinge fracture [risk ratio(RR)=0.72, 95%CI(0.42, 1.23), P=0.23] and complications [RD=-0.00, 95%CI(-0.06, 0.06), P=0.98], showed no statistically significant difference between the two groups.

Conclusions

Autologous bone can better promote the healing of the osteotomy end without increasing the occurrence of complications in the open cuneiform high tibial osteotomy, but the intraoperative time is also increased accordingly. It is recommended to routinely use autologous bone graft to better promote the healing of the hinge end. However, due to the limited quantity and quality of literature included in this study, the conclusions still need to be further verified by large-sample/high-quality prospective randomized controlled studies.

图1 PubMed数据库检索策略
Figure 1 Search strategy in PubMed
图2 文献筛选流程图
Figure 2 Process diagram for enrolled literatures
表1 纳入文献基本特征
Table 1 Characteristics of enrolled literatures
图3 自体骨组与其他植骨材料组手术时间森林图
Figure 3 Forest plot of operation time of autologous bone and bone materials
图4 自体骨组与其他植骨材料组愈合时间森林图
Figure 4 Forest plot of healing time of autologous bone and bone materials
图5 剔除部分文献后自体骨组与其他植骨材料组愈合时间森林图
Figure 5 Forest plot of healing time of autologous bone and bone materials excluded certain studies
图6 自体骨组与其他植骨材料组术后FTA(股骨胫骨角)森林图
Figure 6 Forest plot of postoperative FTA of autologous bone and bone materials
图7 剔除部分文献后自体骨组与其他植骨材料组术后FTA(股骨胫骨角)比较的森林图
Figure 7 Forest plot of postoperative FTA of autologous bone and bone materials excluded certain studies
图8 自体骨组与其他植骨材料组术后KSS(膝关节协会评分)功能评分森林图
Figure 8 Forest plot of postoperative KSS function score of autologous bone and bone materials
图9 自体骨组与其他植骨材料组术后HSS(特种外科医院)膝关节功能评分森林图
Figure 9 Forest plot of postoperative HSS knee function score of autologous bone and bone materials
图10 自体骨组与其他植骨材料组延迟愈合率森林图
Figure 10 Forest plot of incidence of delayed healing of autologous bone and bone materials
图11 剔除部分文献后自体骨组与其他植骨材料组延迟愈合率比较的森林图
Figure 11 Forest plot of incidence of delayed healing of autologous bone and bone materials excluded certain studies
图12 自体骨组与其他植骨材料组术后外侧铰链骨折森林图
Figure 12 Forest plot of lateral hinge fracture of autologous bone and bone materials after operation
图13 自体骨组与其他植骨材料组并发症森林图
Figure 13 Forest plot of complications of autologous bone and bone materials
[1]
Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: areview[J]. JAMA, 2021, 325(6): 568-578.
[2]
郇松玮,罗斯敏,张还添,等. 胫骨高位截骨术治疗膝内侧间室骨关节炎的疗效分析[J/CD]. 中华关节外科杂志(电子版), 2021, 15(1): 33-38.
[3]
Kim MS, Koh IJ, Kim CK, et al. Patient expectations and satisfaction after medial opening wedge high tibial osteotomy[J]. J Arthroplasty, 2020, 35(12): 3467-3473.
[4]
Na YG, Kwak DS, Chong S, et al. Factors affecting stability after medial opening wedge high tibial osteotomy using locking plate: a cadaveric study[J]. Knee, 2019, 26(6): 1313-1322.
[5]
朱旭,张林,进晓辉,等. 开放式楔形胫骨高位截骨术在膝骨关节炎中的应用[J/CD]. 中华关节外科杂志(电子版), 2020, 14(6): 769-772.
[6]
Han SB, Choi JH, Mahajan A, et al. Incidence and predictors of lateral hinge fractures following medial opening-wedge high tibial osteotomy using locking plate system: better performance of computed tomography scans[J]. J Arthroplasty, 2019, 34(5): 846-851.
[7]
Goshima K, Sawaguchi T, Shigemoto K, et al. Plate removal without loss of correction after open-wedge high tibial osteotomy is possible when posterior cortex bone union reaches osteotomy gap center even in incompletely filled gaps[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(6): 1827-1834.
[8]
Slevin O, Ayeni OR, Hinterwimmer S, et al. The role of bone void fillers in medial opening wedge high tibial osteotomy: a systematic review[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(11): 3584-3598.
[9]
Sarman H, Isik C, Uslu M, et al. High tibial osteotomy using a locking titanium plate with or with out autografting[J]. Acta Ortop Bras, 2019, 27(2): 80-84.
[10]
Belsey J, Diffo Kaze A, Jobson S, et al. The biomechanical effects of allograft wedges used for large corrections during medial opening wedge high tibial osteotomy[J/OL]. PLoS One, 2019, 14(5): e0216660. DOI: 10.1371/journal.pone.0216660.
[11]
Van Genechten W, Van den Bempt M, Van Tilborg W, et al. Structural allograft impaction enables fast rehabilitation in opening-wedge high tibial osteotomy: a consecutive case series with one year follow-up[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(12): 3747-3757.
[12]
Tohma Y, Takeuchi R, Tanaka Y. Advantages of creation of holes and removal of air in artificial bone for early bone formation when used artificial bone as a gap filler in open wedge high tibial osteotomy[J]. Eur J Orthop Surg Traumatol, 2019, 29(1):131-137.
[13]
Gouin F, Yaouanc F, Waast D, et al. Open wedge high tibial osteotomies: calcium-phosphate ceramic spacer versus autologous bone graft[J]. Orthop Traumatol Surg Res, 2010, 96(6): 637-645.
[14]
Kuremsky MA, Schaller TM, Hall CC, et al. Comparison of autograft vs allograft in opening-wedge high tibial osteotomy[J]. J Arthroplasty, 2010, 25(6): 951-957.
[15]
Cho SW, Kim DH, Lee GC, et al. Comparison between autogenous bone graft and allogenous cancellous bone graft in medial open wedge high tibial osteotomy with 2-year follow-up[J]. Knee Surg Relat Res, 2013, 25(3): 117-125.
[16]
蒋海涛. 三种不同植骨材料在胫骨高位截骨手术中的疗效比较[D].河北联合大学,2014.
[17]
Lind-Hansen TB, Lind MC, Nielsen PT, et al. Open-wedge high tibial osteotomy: RCT 2 years RSA follow-up[J]. J Knee Surg, 2016, 29(8): 664-672.
[18]
Hernigou P, Dubory A, Pariat J, et al. Beta-tricalcium phosphate for orthopedic reconstructions as an alternative to autogenous bone graft[J]. Morphologie, 2017, 101(334): 173-179.
[19]
Kim HJ, Seo I, Shin JY, et al. Comparison of bone healing in open-wedge high tibial osteotomy between the use of allograft bone chips with autologous bone marrow and the use of allograft bone chips alone for gap filling[J]. J Knee Surg, 2020, 33(6): 576-581.
[20]
Jung WH, Takeuchi R, Kim DH, et al. Faster union rate and better clinical outcomes using autologous bone graft after medial opening wedge high tibial osteotomy[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(5): 1380-1387.
[21]
Haghpanah B, Kaseb MH, Espandar R, et al. No difference in union and recurrence rate between iliac crest autograft versus allograft following medial opening wedge high tibial osteotomy: a randomized controlled trial[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(10): 3375-3381.
[22]
Lash NJ, Feller JA, Batty LM, et al. Bone grafts and bone substitutes for opening-wedge osteotomies of the knee: a systematic review[J]. Arthroscopy, 2015, 31(4): 720-730.
[23]
Dissaux C, Ruffenach L, Bruant-Rodier C, et al. Cleft alveolar bone graft materials: literature review[J]. Cleft Palate Craniofac J, 2022, 59(3): 336-346.
[24]
Fucentese SF, Tscholl PM, Sutter R, et al. Bone autografting in medial open wedge high tibial osteotomy results in improved osseous gap healing on computed tomography, but no functional advantage: a prospective, randomised, controlled trial[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(9): 2951-2957.
[25]
McLain RF, Techy F. Trephine technique for iliac crest bone graft harvest: long-term results[J]. Spine, 2021, 46(1): 41-47.
[26]
Lee OS, Lee KJ, Lee YS. Comparison of bone healing and outcomes between allogenous bone chip and hydroxyapatite chip grafts in open wedge high tibial osteotomy[J/OL]. J Mater Sci Mater Med, 2017, 28(12): 189. DOI: 10.1007/s10856-017-5998-0.
[27]
Ando T, Kawakami T. Awaiting allograft antigen: for rejection or tolerance?[J]. J Allergy Clin Immunol, 2019, 143(2): 560-562.
[28]
Pei B, Wang W, Dunne N, et al. Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements, and prospects[J/OL]. Nanomaterials, 2019, 9(10): 1501. DOI: 10.3390/nano9101501.
[29]
Nha KW, Oh SM, Ha YW, et al. A retrospective comparison of union rates after open wedge high tibial osteotomies with and without synthetic bone grafts (hydroxyapatite and β-tricalciumphosphate) at 2 years[J]. Arthroscopy, 2018, 34(9): 2621-2630.
[30]
Princi G, Rossini M, Marzilli F, et al. In vivo histological examination of the graft site 3 years after open-wedge high tibial osteotomy with nanohydroxyapatite augmentation[J]. J Orthop Case Rep, 2021, 11(10): 53-57.
[31]
Putnis S, Neri T, Klasan A, et al. The outcome of biphasic calcium phosphate bone substitute in a medial opening wedge high tibial osteotomy[J/OL]. J Mater Sci Mater Med, 2020, 31(6): 53. DOI: 10.1007/s10856-020-06391-9.
[1] 刘瀚忠, 黄生辉, 万俊明, 李家春, 舒涛. 髌上入路和髌旁外侧入路髓内钉治疗胫骨骨折疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 795-801.
[2] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[3] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[4] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[5] 杨国栋, 张辉, 郭珈, 曲迪, 张静, 戚超. 外侧半月板后角撕裂是否修复的术后疗效对比[J]. 中华关节外科杂志(电子版), 2023, 17(05): 619-624.
[6] 夏效泳, 王立超, 朱治国, 丛云海, 史宗新. 深度塌陷性胫骨平台骨折的形态特点和治疗策略[J]. 中华关节外科杂志(电子版), 2023, 17(05): 625-632.
[7] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[8] 马鹏程, 刘伟, 张思平. 股骨髋臼撞击综合征关节镜手术中闭合关节囊的疗效影响[J]. 中华关节外科杂志(电子版), 2023, 17(05): 653-662.
[9] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[10] 李雄雄, 周灿, 徐婷, 任予, 尚进. 初诊导管原位癌伴微浸润腋窝淋巴结转移率的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 466-474.
[11] 张再博, 王冰雨, 焦志凯, 檀碧波. 胃癌术后下肢深静脉血栓危险因素的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 475-480.
[12] 武慧铭, 郭仁凯, 李辉宇. 机器人辅助下经自然腔道取标本手术治疗结直肠癌安全性和有效性的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(05): 395-400.
[13] 莫闲, 杨闯. 肝硬化患者并发门静脉血栓危险因素的Meta分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 678-683.
[14] 段文忠, 白延霞, 徐文亭, 祁虹霞, 吕志坚. 七氟烷和丙泊酚在肝切除术中麻醉效果比较Meta分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 640-645.
[15] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
阅读次数
全文


摘要