切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 78 -85. doi: 10.3877/cma.j.issn.1674-134X.2024.01.011

基础论著

肩胛骨三角支点三角区的三维测量及形态学分析
宇文培之1, 程鑫群1, 雷翔1, 张晓娟1, 朱燕宾1, 吕红芝1, 陈伟1, 张英泽1,()   
  1. 1. 050051 石家庄,河北医科大学第三医院,河北省骨科研究所
  • 收稿日期:2023-11-06 出版日期:2024-02-01
  • 通信作者: 张英泽
  • 基金资助:
    国家自然科学基金面上项目(82072447)

Three-dimensional measurement and morphological analysis of delto-fulcral triangle of scapula

Peizhi Yuwen1, Xinqun Cheng1, Xiang Lei1, Xiaojuan Zhang1, Yanbin Zhu1, Hongzhi Lyu1, Wei Chen1, Yingze Zhang1,()   

  1. 1. Hebei Institute of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
  • Received:2023-11-06 Published:2024-02-01
  • Corresponding author: Yingze Zhang
引用本文:

宇文培之, 程鑫群, 雷翔, 张晓娟, 朱燕宾, 吕红芝, 陈伟, 张英泽. 肩胛骨三角支点三角区的三维测量及形态学分析[J]. 中华关节外科杂志(电子版), 2024, 18(01): 78-85.

Peizhi Yuwen, Xinqun Cheng, Xiang Lei, Xiaojuan Zhang, Yanbin Zhu, Hongzhi Lyu, Wei Chen, Yingze Zhang. Three-dimensional measurement and morphological analysis of delto-fulcral triangle of scapula[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(01): 78-85.

目的

使用Mimics软件对国人肩胛骨的骨性三角支点三角区(DFT)进行三维测量并进行形态学分析。

方法

纳入2021年3月在河北医科大学第三医院行肩胛骨CT薄层平扫的92名健康成人志愿者,无肩胛骨及肩部外伤及手术史,无肩关节炎、风湿、类风湿性疾病等。使用Mimics软件将患者影像学资料进行三维重建,确定DFT区域,并测量DFT三边及各角,喙突前外侧点、肩峰前外侧角顶点及后外侧角后缘分别到盂心和肩胛骨平面的距离;喙突前外侧点-盂心-肩胛下角、肩峰前外侧角顶点-盂心-肩胛下角之间的角度以及肩峰后外侧角后缘-盂心-肩胛下角之间的角度。所有患者按照20岁一个年龄段进行分组,采用卡方检验和t检验分别比较不同性别年龄之间各指标是否存在差异,并进行相关性分析。

结果

DFT在所有志愿者中均呈现不等边三角形态,喙突前上点和肩峰后侧点的距离(AFPF)最长,对应的角A最大。不同年龄分组的肩胛骨各参数差异无统计学意义(均为P>0.05);男性的喙突-盂心(F=0.377,P<0.05)、喙突-肩胛骨平面(t=110.122,P<0.05)、肩峰前外侧角顶点-盂心(t=36.9882,P<0.05)、肩峰前外侧角顶点-盂心(t=117.164,P<0.05)、肩峰后外侧角后缘-盂心(t=68.705,P<0.05)、肩峰-肩胛骨平面(t=63.741,P<0.05)、喙突前上点和肩峰前外侧角顶点之间的距离(AFLAC)(t=63.185,P<0.05),肩峰前外侧角顶点和肩峰后侧点的距离(LACPF)(t=44.804,P<0.05)、喙突前上点和肩峰后侧点的距离(AFPF)(t=125.943,P<0.05)、肩峰下面积(t=84.761,P<0.05)均高于女性,差异具有统计学意义。肩峰前外侧角顶点-盂心-肩胛下角同肩峰后外侧角后缘-盂心-肩胛下角存在高度正相关(r=0.537,P<0.05),AFPF同LACPF和AFPF均存在高度正相关(r=0.584、0.636,均为P<0.05),角A同角B、C呈高度负相关(r=-0.765、-0.585,均为P<0.05)。

结论

DFT三角男性和女性在长度指标上存在差异,AFPF是决定冈上肌出口大小的主要指标,该三角可作为肩峰下撞击综合征等疾病时的参考依据。

Objective

To measure and analyze the morphology of delto-fulcral triangle (DFT) of scapula in three dimensions using Mimics software.

Methods

Ninety-two healthy adult volunteers who underwent CT thin-section scanning of the scapula at the Third Hospital of Hebei Medical University in March 2021 were included, No history of trauma or surgery to the scapula or shoulder, no arthritis of the shoulder, rheumatism, rheumatoid disease, etc. Data were reconstructed into three dimensions using Mimics software, the delto-fulcral triangle was determined based on three points including the anterosuperior point of the coracoid process, the most lateral and the most posterior points of the scaphoid, edges and angles of deltofu-lcral triangle, distances between the three points to the glenoid and to the scapular plane, angles of the three point-glenoid-subscapula (angles between anterosuperior point of the coracoid process-glenoid-subscapular angle, vertex of posterolateral angle of acromion, and posterior edge of posterolateral angle of acromion-glenoid-subscapular angle)were measured. Patients were divided into three groups with a interval age of 20 years; differences in each index were compared between the genders and ages using chi square test and t test, as well as correlation analysis.

Results

The DFT showed an unequal triangular pattern in all the volunteers, with largest length of anterior fulcrum and posterior fulcrum landmarks (AFPF) and corresponding to the largest angle A. There was no statistically significant difference in the parameters of the scapula in different age subgroups(all P>0.05). In male volunteers, the rostral-glenoid centre (F=0.377, P<0.05), the rostral-scapular plane (t=110.122, P<0.05), the vertex of the anterior-lateral angle of the acromion-glenoid centre (t=36.9882, P<0.05), and the vertex of the anterior-lateral angle of the acromion-glenoid centre (t= 117.164, P<0.05), posterior edge of posterior lateral angle of acromion - glenoid centre (t=68.705, P<0.05), acromion-scapular plane (t=63.741, P<0.05), distance between anterior fulcrum and lateral acromion landmarks (AFLAC) (t=63.185, P<0.05), and lateral acromion and posterior fulcrum landmarks (LACPF) (t=44.804, P<0.05), AFPF (t=125.943, P<0.05), and the area under the acromion (t=84.761, P<0.05) were higher than those of the females, and the difference was statistically significant. There was a highly positive correlation between the anterolateral acromion apex-glenoid heart-subacromial angle and the posterior edge of the posterior lateral acromion-glenoid heart-subacromial angle (r=0.537, P<0.05), a highly positive correlation between the AFPF and both the LACPF and AFPF (r=0.584, 0.636, both P<0.05), and a highly negative correlation between angle A and angle B and C (r=-0.765, -0.585, both P<0.05) .

Conclusions

DFT triangle differs between males and females in terms of length indicators. AFPF is the main indicator of the size of the supraspinatus outlet, and this triangle can be used as a reference in the case of conditions such as subacromial impingement syndrom

图1 肩胛骨三维重建模型。图A为右肩胛骨校准位置;图B为左肩胛骨校准位置;图C为DFT(骨性三角支点三角区)各边长及夹角;图D为DFT三点到盂心的距离;图E为DFT三点到肩胛骨平面的距离;图F为DFT三点-盂心-肩胛下角之间的角度
Figure 1 3D reconstruction model of the scapula. A shows the calibrated position of the right scapula; B shows the calibrated position of the left scapula; C shows the lengths and angles of each side of the DFT; D shows the distances from the three points of the DFT to the glenoid centre; E shows the distances from the three points of the DFT to the plane of the scapula; F shows the angle between the three points of the DFT-glenoid centre and the subscapular angle
表1 不同年龄段各参数对比分析(±s)
Table 1 Comparative analysis of each parameter at different ages
CT图像参数CT image parameters 20~40岁20~40 years 40~60岁40~60 years >60岁>60 years 总计Total F P
例数Number of cases 31 30 31 92    
临界路肩角(CSA)(°)Critical shoulder angle(CSA)(°) 36.7±4.4a 34.2±4.3b 36.5±4.2 35.8±4.4 3.032 >0.05
喙突-盂心-肩胛下角(°)Coracoid-glenoid center-scapula inferior angle 128.9±6.2 129.8±4.8 129.9±8.0 129.5±6.4 0.23 >0.05
喙突-盂心(mm)Coracoid-glenoid center 37.6±3.1 38.1±3.5 37.73±3 37.8±3.2 0.377 >0.05
喙突-肩胛骨平面(mm)Coracoid- scapular plane 28.8±3.5 28.8±3.4 28.27±4.0 28.6±3.6 0.157 >0.05
肩峰前外侧角顶点-盂心-肩胛下角(°)Apex of anterolateral acromion-glenoid center-scapula inferior angle 169.2±4.9 166.9±5.9 168.1±4.8 168.1±5.2 1.381 >0.05
肩峰前外侧角顶点-盂心(mm)Apex of anterolateral acromion-glenoid center 45.6±3.2 45.0±3.7 46.1±3.8 45.6±3.6 2.302 >0.05
肩峰前外侧角顶点-肩胛骨平面(mm)Apex of anterolateral acromion - scapular plane 7.5±4.1 8.7±3.8 7.5±3.8 7.9±3.9 0.971 >0.05
肩峰后外侧角后缘-盂心-肩胛下角(°)Posterior border of posterolateral angle of the acromion-glenoid center -scapula inferior angle 116.2±7.2 113.0±7.6 115.7±7.2 115.0±7.4 1.601 >0.05
肩峰后外侧角后缘-盂心(mm)Posterior edge of posterolateral angle of the acromion - glenoid center 41.2±3.8 42.0±3.4 41.9±3.2 41.7±3.5 1.027 >0.05
肩峰后外侧角后缘-肩胛骨平面(mm)Posterior border of posterior lateral angle of acromion-scapular plane) 36.3±4.0a 37.7±3.5 37.0±3.2 37.0±3.6 1.860 >0.05
LACPF(mm) 39.9±4.8 40.7±4.9 41.0±6.1 40.5±5.3 0.884 >0.05
AFLAC(mm) 42.4±5.1 42.7±3.5 41.7±4.2 42.3±4.3 0.343 >0.05
AFPF(mm) 65.9±6.6 67.6±5.3 66.5±5.8 66.6±5.9 1.263 >0.05
角A(°)Angle A 106.6±6.1 108.5±4.9 106.9±4.6 107.3±5.2 1.111 >0.05
角B(°)Angle B 37.9±3.8 36.8±2.6 37.0±3.6 37.2±3.4 1.078 >0.05
角C(°)Angle C 35.4±4.3 34.8±4.1 36.1±4.6 35.5±4.3 0.845 >0.05
肩峰下面积(mm2)Subacromial area 813.1±183.1 824.4±150.7 821.4±174.9 819.6±168.5 0.130 >0.05
表2 不同性别各参数对比分析(±s)
Table 2 Comparative analysis of each parameter by gender
CT图像参数CT image parameters 男Male 女Female t P
例数Number of cases 44 48    
临界路肩角(CSA)(°)Critical shoulder angle(CSA) 35.8±4.2 35.9±4.6 0 >0.05
喙突-盂心-肩胛下角(°)Coracoid-glenoid center-scapula inferior angle 129.2±6.9 129.8±6.1 0.194 >0.05
喙突-盂心(mm)Coracoid-glenoid center 40.3±2.4 35.6±1.9 110.122 <0.0001
喙突-肩胛骨平面(mm)Coracoid- scapular plane 30.7±3.0 26.8±3.1 36.988 <0.0001
肩峰前外侧角顶点-盂心-肩胛下角(°)Apex of anterolateral acromion-glenoid center-scapula inferior angle 168.3±5.3 167.9±5.2 0.180 >0.05
肩峰前外侧角顶点-盂心(mm)Apex of anterolateral acromion-glenoid center 48.3±2.7 43.1±2.1 117.164 <0.0001
肩峰前外侧角顶点-肩胛骨平面(mm)Apex of anterolateral acromion - scapular plane 8.0±4.0 7.8±3.8 0.056 >0.05
肩峰后外侧角后缘-盂心-肩胛下角(°)Posterior border of posterior lateral angle of the acromion-glenoid center -scapula inferior angle 113.9±8.2 116.0±6.6 1.899 >0.05
肩峰后外侧角后缘-盂心(mm)Posterior border of posterior posterolateral angle of the acromion - glenoid center 44.1±2.8 39.5±2.5 68.705 <0.0001
肩峰后外侧角后缘-肩胛骨平面(mm)Posterior border of posterior lateral angle of acromion-scapular plane 39.4±3.1 34.8±2.4 63.741 <0.0001
LACPF(mm)anterior fulcrum and lateral acromion landmarks 44.0±4.4 37.3±3.7 63.185 <0.0001
AFLAC(mm)lateral acromion and posterior fulcrum landmarks 44.9±3.7 39.9±3.3 44.804 <0.0001
AFPF(mm)anterior fulcrum and posterior fulcrum landmarks 71.3±3.9 62.3±3.8 125.943 <0.0001
角A(°)Angle A 106.9±5.8 107.7±4.7 0.600 >0.05
角B(°)Angle B 36.9±3.2 37.6±3.5 1.002 >0.05
角C(°)Angle C 36.2±4.8 34.7±3.7 3.035 >0.05
肩峰下面积(mm2)Subacromial area 942.1±139.9 707.3±100.9 84.761 <0.0001
图2 肩胛骨骨性参数相关性检验注:A-临界路肩角(CSA);B-喙突盂心肩胛下;C-喙突盂心;D-喙突离中线;E-肩峰高盂心肩胛下;F-肩峰高盂心;G-肩峰高离中线;H-肩峰角重心肩胛下角;I-肩峰角盂心;G-肩峰外侧离中线;K-LACPF-喙突前上点和肩峰前外侧角顶点之间的距离;L- AFLAC-肩峰前外侧角顶点和肩峰后侧点的距离;M-AFPF-喙突前上点和肩峰后侧点的距离;N-角A;O-角B;P-角C;Q-肩峰下面积
Figure 2 Correlation test for scapular parameters Note: A-critical shoulder angle(CSA); B-coracoid-glenoid center-scapula inferior angle; C-coracoid-glenoid center; D-coracoid- scapular plane; E-apex of anterolateral acromion-glenoid center-scapula inferior angle; F-apex of anterolateral acromion-glenoid center; G-apex of anterolateral acromion-scapular plane; H-posterior border of posterior lateral angle of the acromion-glenoid center-scapula inferior angle; I-posterior border of posterior posterolateral angle of the acromion-glenoid center; J-posterior border of posterior lateral angle of acromion-scapular plane; K-LACPF-lateral acromion and posterior fulcrum landmarks; L-AFLAC-anterior fulcrum and lateral acromion landmarks; M-AFPF-anterior fulcrum and posterior fulcrum landmarks; N-angle A; O-angle B; P-angle C; Q-subacromial area
[1]
Morelli M K, Martin, et al. Acromion morphology and prevalence of rotator cuff tear: a systematic review and meta-analysis[J]. Clin Anat, 2019, 32(1):122-130.
[2]
Bhatia DN, Debeer JF, Toit DF. Association of a large lateral extension of the acromion with rotator cuff tears[J]. J Bone Joint Surg Am, 2006, 88(8): 1889; authorreply1889-1889; authorreply1890.
[3]
Pandey V, Vijayan D, Tapashetti S, et al. Does scapular morphology affect the integrity of the rotator cuff?[J]. J Shoulder Elbow Surg, 2016, 25(3): 413-421.
[4]
Naidoo N, Lazarus L, Satyapal KS, et al. The morphometric anatomy of the delto-fulcral triangle: a 3D CT-based reconstruction study[J]. J Orthop, 2016, 14(1): 62-67.
[5]
Pastor MF, Ferle M, Hagenah J, et al. The stabilization effect of the conjoint tendon in reverse total shoulder arthroplasty[J]. Clin Biomech, 2019, 63: 179-184.
[6]
Gagey O, Hue E. Mechanics of the deltoid muscle. A new approach[J]. Clin Orthop Relat Res, 2000(375): 250-257.
[7]
Bois AJ, Fening SD, Polster J, et al. Quantifying glenoid bone loss in anterior shoulder instability: reliability and accuracy of 2-dimensional and 3-dimensional computed tomography measurement techniques[J]. Am J Sports Med, 2012, 40(11): 2569-2577.
[8]
董航,沈先月,李昊轩,等. 基于三维重建技术的国人肩关节盂三维形态学测量与研究[J/OL]. 中华老年骨科与康复电子杂志2018, 4(2): 98-104.
[9]
Matsumura N, Oki S, Ogawa K, et al. Three-dimensional anthropometric analysis of the glenohumeral joint in a normal Japanese population[J]. J Shoulder Elbow Surg, 2016, 25(3): 493-501.
[10]
Merrill A, Guzman K, Miller SL. Gender differences in glenoid anatomy: an anatomic study[J]. Surg Radiol Anat, 2009, 31(3): 183-189.
[11]
Churchill RS, Brems JJ, Kotschi H. Glenoid size, inclination, and version: an anatomic study[J]. J Shoulder Elbow Surg, 2001, 10(4): 327-332.
[12]
Gupta Y, Morgan M, Singh A, et al. Junior doctors' knowledge of applied clinical anatomy[J]. Clin Anat, 2008, 21(4): 334-338.
[13]
周柏臻,李春雨,林绍仪,等. 3D打印技术辅助肩胛骨改良Judet入路手术治疗肩胛骨骨折的疗效[J/OL]. 中华老年骨科与康复电子杂志2022, 8(3): 172-176.
[14]
Boileau P, Cheval D, Gauci MO, et al. Automated three-dimensional measurement of glenoid version and inclination in arthritic shoulders[J]. J Bone Joint Surg Am, 2018, 100(1): 57-65.
[15]
Hoessly M, Bouaicha S, Jentzsch T, et al. Angle of approach to the superior rotator cuff of arthroscopic instruments depends on the acromial morphology: an experimental study in 3D printed human shoulders[J/OL]. J Orthop Surg Res, 2019, 14(1): 435. DOI: 10.1186/s13018-019-1486-1.
[16]
Veeger HE, van der Helm FC, van der Woude LH, et al. Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism[J]. J Biomech, 1991, 24(7): 615-629.
[17]
Braunstein V, Korner M, Brunner U, et al. The fulcrum axis: a new method for determining glenoid version[J]. J Shoulder Elbow Surg, 2008, 17(5): 819-824.
[18]
Le SV, Conrad B, Wright TW. Application of the fulcrum axis to estimate the central scapular axis[J]. J Shoulder Elbow Surg, 2014, 23(8): 1143-1149.
[19]
Cetinkaya M, Ataoglu MB, Ozer M, et al. Subscapularis tendon slip number and coracoid overlap are more related parameters for subcoracoid impingement in subscapularis tears: a magnetic resonance imaging comparison study[J]. Arthroscopy, 2017, 33(4): 734-742.
[20]
Richards DP, Burkhart SS, Campbell SE. Relation between narrowed coracohumeral distance and subscapularis tears[J]. Arthroscopy, 2005, 21(10): 1223-1228.
[21]
Gerber C, Terrier F, Ganz R. The role of the coracoid process in the chronic impingement syndrome[J]. J Bone Joint Surg Br, 1985, 67(5): 703-708.
[22]
Owens BD, Campbell SE, Cameron KL. Risk factors for anterior glenohumeral instability[J]. Am J Sports Med, 2014, 42(11): 2591-2596.
[23]
Casier SJ, van den Broecke R, van Houcke J, et al. Morphologic variations of the scapula in 3-dimensions: a statistical shape model approach[J]. J Shoulder Elbow Surg, 2018, 27(12): 2224-2231.
[24]
Jacxsens M, Elhabian SY, Brady SE, et al. Thinking outside the glenohumeral box: hierarchical shape variation of the periarticular anatomy of the scapula using statistical shape modeling[J]. J Orthop Res, 2020, 38(10): 2272-2279.
[1] 王鑫光, 李杨, 何宜蓁, 田华. 3D打印技术在膝关节置换翻修术中的应用研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(01): 93-97.
[2] 滕元君, 谭念, 贾更新, 张政, 李昌玺, 郭来威, 赵良功, 夏亚一. 不同胫骨隧道位置对后交叉韧带杀伤角影响的定量研究[J]. 中华关节外科杂志(电子版), 2022, 16(06): 729-734.
[3] 陆雄, 陈海伟, 刘益民, 杨洋. 3D腹腔镜右半结肠癌根治术对内脏型肥胖患者淋巴结清扫的应用价值[J]. 中华普外科手术学杂志(电子版), 2022, 16(03): 311-314.
[4] 费发珠, 张帅, 刘发蓉, 芦佳骏, 任宾, 樊海宁. 三维可视化联合术中ICG荧光引导腹腔镜肝包虫病切除术一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 577-580.
[5] 高旭东, 王小明, 陈江明, 奚士航, 潘璇. 基于三维可视化技术的脾门区脾动脉三维分型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 434-439.
[6] 王建奇, 陈政良, 刘雨, 俞星新, 耿志达, 姜洪池, 梁英健. 基于160例患者CT三维重建的肝血管解剖变异分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 427-433.
[7] 李映安, 晋云, 储心昀, 胡苹苹, 王峻峰. 混合现实技术在腹腔镜肝切除术中导航的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 401-406.
[8] 王祎, 王峻峰, 杨超, 晋云, 胡苹苹. 数字医学技术在肝脏分段及解剖性肝切除中的应用现状[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 16-21.
[9] 刘文瑛, 欧阳再兴, 朱剑华, 吴黎明, 谭勇, 宋灏, 朱玉珍, 黄从云. 多模态影像技术在精准肝癌肝切除中的应用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 574-579.
[10] 干宸鑫, 王兴, 潘耀振. 三维重建在中晚期肝癌转化切除中的应用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(05): 503-507.
[11] 谭凯, 杜锡林, 陈安. 三维可视化技术在肝脏枪击贯通伤中的应用:附一例报告[J]. 中华肝脏外科手术学电子杂志, 2022, 11(04): 419-421.
[12] 王文儿, 周国超, 付华, 陈晓明, 田潭平, 蔡融民, 田林, 胡凡博, 周旅, 宋新. 三维可视化技术在腹腔镜解剖性肝切除治疗Ⅰ型肝胆管结石病中的应用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 171-175.
[13] 全坤, 沙俊诚, 张庆桥, 徐浩, 肖晋昌, 神斌, 魏宁, 崔艳峰, 刘洪涛, 祖茂衡. 三维可视化技术引导下TIPS在巴德-吉亚利综合征中的应用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 154-158.
[14] 马小刚, 秦桂兰, 缪嘉吉. 西藏地区复杂肩胛骨骨折手术治疗疗效分析[J]. 中华肩肘外科电子杂志, 2023, 11(02): 117-121.
[15] 周柏臻, 李春雨, 林绍仪, 刘付滴, 徐万宏. 3D打印技术辅助肩胛骨改良Judet入路手术治疗肩胛骨骨折的疗效[J]. 中华老年骨科与康复电子杂志, 2022, 08(03): 172-176.
阅读次数
全文


摘要