切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 586 -591. doi: 10.3877/cma.j.issn.1674-134X.2022.05.009

综述

细胞焦亡与类风湿性关节炎的相关研究进展
马尧1, 杨明义1, 许珂2, 郝博1, 许鹏2,()   
  1. 1. 710054 西安市红会医院骨坏死与关节重建科;716000 延安大学医学院
    2. 710054 西安市红会医院骨坏死与关节重建科
  • 收稿日期:2020-05-29 出版日期:2022-10-01
  • 通信作者: 许鹏
  • 基金资助:
    国家自然科学基金(81271948)

Research advances in correlation between pyroptosis and rheumatoid arthritis

Yao Ma1, Mingyi Yang1, Ke Xu2, Bo Hao1, Peng Xu2,()   

  1. 1. Department of Osteonecrosis and Joint Reconstruction, Xi′an Honghui Hospital, Xi’an 710054, China; Yan′an University, Yan’an 716000, China
    2. Department of Osteonecrosis and Joint Reconstruction, Xi′an Honghui Hospital, Xi’an 710054, China
  • Received:2020-05-29 Published:2022-10-01
  • Corresponding author: Peng Xu
引用本文:

马尧, 杨明义, 许珂, 郝博, 许鹏. 细胞焦亡与类风湿性关节炎的相关研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(05): 586-591.

Yao Ma, Mingyi Yang, Ke Xu, Bo Hao, Peng Xu. Research advances in correlation between pyroptosis and rheumatoid arthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(05): 586-591.

细胞焦亡是一种新近发现并已被证实与炎症有关的程序性细胞死亡方式,其过程与多种疾病的发生存在密切联系。类风湿性关节炎(RA)作为一种常见的炎症性自身免疫性疾病,其发病机制尚不完全清楚。以往研究显示,细胞焦亡过程在RA发病中扮演着重要角色。本文拟通过对细胞焦亡过程中所涉及的重要通路及分子与RA间的联系进行综述,为阐明RA发病机制、改善其治疗及预后提供新的理论依据。

Pyroptosis is a newly discovered and confirmed the pattern of programmed cell death associated with inflammation, which is strongly associated with the development of a variety of diseases. As a common inflammatory autoimmune disease, the pathogenesis of rheumatoid arthritis (RA) has not been fully understood. Previous studies have shown that the process of pyroptosis plays an important role in the pathogenesis of RA. This review aimed to provide a new theoretical basis for elucidating the pathogenesis of RA, improving the treatment and prognosis by summarizing the important pathways involved in the process of pyroptosis and the studies between the molecules and RA.

[1]
黄清宇,杜楚江,张雨竹,等.细胞焦亡研究进展[J].中国免疫学杂志202036(2):245-250.
[2]
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254.
[3]
Green DR. The coming decade of cell death research: five riddles[J]. Cell, 2019, 177(5): 1094-1107.
[4]
Zhang YY, Chen X, Gueydan C, et al. Plasma membrane changes during programmed cell deaths[J]. Cell Res, 2018, 28(1): 9-21.
[5]
Yi YS. Role of inflammasomes in inflammatory autoimmune rheumatic diseases[J]. Korean J Physiol Pharmacol, 2018, 22(1): 1-15.
[6]
Guo C, Fu R, Wang S, et al. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis[J]. Clin Exp Immunol, 2018, 194(2): 231-243.
[7]
Rathinam VK, Zhao Y, Shao F. Innate immunity to intracellular LPS[J]. Nat Immunol, 2019, 20(5): 527-533.
[8]
Feng SY, Fox D, Man SM. Mechanisms of gasdermin family members in inflammasome signaling and cell death[J]. J Mol Biol, 2018, 430(18): 3068-3080.
[9]
Evavold CL, Kagan JC. Defying death: The (W)hole truth about the fate of GSDMD pores[J]. Immunity, 2019, 50(1): 15-17.
[10]
Tang L, Lu C, Zheng G, et al. Emerging insights on the role of gasdermins in infection and inflammatory diseases[J/OL]. Clin Transl Immunol, 2020, 9(10): e1186. DOI: 10.1002/cti2.1186.
[11]
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci201742(4): 245-254.
[12]
Yang DH, He Y, Munoz-Planillo R, et al. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock[J]. Immunity, 2015, 43(5): 923-932.
[13]
Sarhan J, Liu BC, Muendlein HI, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during yersinia infection[J]. Proc Natl Acad Sci USA, 2018, 115(46): E10888-E10897.
[14]
Zhao J, Jiang P, Guo S, et al. Apoptosis, autophagy, netosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis[J/OL]. Front Immunol, 2021, 12: 809806. DOI: 10.3389/fimmu.2021.809806.
[15]
Chadha S, Behl T, Bungau S, et al. Mechanistic insights into the role of pyroptosis in rheumatoid arthritis[J]. Curr Res Transl Med, 2020, 68(4): 151-158.
[16]
Jimi E, Fei H, Nakatomi C. NF-κB signaling regulates physiological and pathological chondrogenesis[J/OL]. Int J Mol Sci, 2019, 20(24): 6275. DOI: 10.3390/ijms20246275.
[17]
Xia ZB, Meng FR, Fang YX, et al. Inhibition of NF-κB signaling pathway induces apoptosis and suppresses proliferation and angiogenesis of human fibroblast-like synovial cells in rheumatoid arthritis[J/OL]. Medicine, 2018, 97(23): e10920. DOI: 10.1097/MD.0000000000010920.
[18]
Jimi E, Takakura N, Hiura F, et al. The role of NF-κB in physiological bone development and inflammatory bone diseases: is NF-κB inhibition "killing two birds with one stone" ?[J/OL]. Cells, 2019, 8(12): 1636. DOI: 10.3390/cells8121636.
[19]
Li G, Xia Z, Liu Y, et al. SIRT1 inhibits rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and inflammatory response via suppressing NF-κB pathway[J/OL]. Biosci Rep, 2018, 38(3): BSR20180541. DOI: 10.1042/BSR20180541.
[20]
Spel L, Martinon F. Inflammasomes contributing to inflammation in arthritis[J]. Immunol Rev, 2020, 294(1): 48-62.
[21]
Yang P, Feng W, Li C, et al. LPS induces fibroblast-like synoviocytes RSC-364 cells to pyroptosis through NF-κB mediated dual signalling pathway[J]. J Mol Histol, 2021, 52(4): 661-669.
[22]
Ling Y, Xiao M, Huang Z-W, et al. Jinwujiangu capsule treats fibroblast-like synoviocytes of rheumatoid arthritis by inhibiting pyroptosis via the NLRP3/CAPSES/GSDMD pathway[J/OL]. Evid Based Compl Alt, 2021, 2021: 4836992. DOI: 10.1155/2021/4836992.
[23]
杨盼盼. LPS介导NF-κB信号通路触发滑膜成纤维细胞焦亡//中华口腔医学会口腔生物医学专业委员会.2019第九次全国口腔生物医学学术年会论文汇编,遵义市,2019:152.
[24]
赵紫琴,徐瑾,王瑞琳,等. 类风湿性关节炎滑膜组织中NLRP3炎性小体及下游因子IL-1β/IL-18的表达及意义 [J]. 临床与实验病理学杂志201935(5):534-538.
[25]
Addobbati C, Da Cruz H, Adelino JE, et al. Polymorphisms and expression of inflammasome genes are associated with the development and severity of rheumatoid arthritis in Brazilian patients[J]. Inflamm Res, 2018, 67(3): 255-264.
[26]
Wu XY, Li KT, Yang HX, et al. Complement C1q synergizes with PTX3 in promoting NLRP3 inflammasome over-activation and pyroptosis in rheumatoid arthritis[J/OL]. J Autoimmun, 2020, 106: 102336. DOI: 10.1016/j.jaut.2019.102336.
[27]
Ramosguzman CA, Zinovjev K, Tunon I. Modeling caspase-1 inhibition: implications for catalytic mechanism and drug design [J]. Eur J Med Chem, 2019, 169: 159-167.
[28]
Bambouskova M, Potuckova L, Paulenda T, et al. Itaconate confers tolerance to late NLRP3 inflammasome activation[J/OL]. Cell Rep, 2021, 34(10): 108756. DOI: 10.1016/j.celrep.2021.108756.
[29]
Choudhary N, Bhatt LK, Prabhavalkar KS. Experimental animal models for rheumatoid arthritis[J]. Immunopharmacol Immunotoxicol, 2018, 40(3): 193-200.
[30]
吴小山.酸敏感离子通道1a在佐剂性关节炎大鼠关节软骨细胞焦亡中的作用及其机制研究[D].合肥:安徽医科大学,2017.
[31]
Wu X, Ren G, Zhou R, et al. The role of Ca(2+) in acid-sensing ion channel 1a-mediated chondrocyte pyroptosis in rat adjuvant arthritis[J]. Lab Invest, 2019, 99(4): 499-513.
[32]
Li XF, Shen WW, Sun YY, et al. MicroRNA-20a negatively regulates expression of NLRP3-inflammasome by targeting TXNIP in adjuvant-induced arthritis fibroblast-like synoviocytes[J]. Joint Bone Spine, 2016, 83(6): 695-700.
[33]
Shin TH, Kim HS, Kang TW, et al. Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis[J/OL]. Cell Death Dis, 2016, 7(12): e2524. DOI: 10.1038/cddis.2016.442.
[34]
He T, Xu X, Zhang XY, et al. Effectiveness of Huai Qi huang granules on juvenile collagen-induced arthritis and its influence on pyroptosis pathway in synovial tissue[J]. Curr Med Sci, 2019, 39(5): 784-793.
[35]
Nozaki Y, J RI, Sakai K, et al. Inhibition of the IL-18 receptor signaling pathway ameliorates disease in a murine model of rheumatoid arthritis[J/OL]. Cells, 2019, 9(1): 11. DOI: 10.3390/cells9010011.
[1] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[2] 张曼, 李明庆, 李军苗. 当归四逆汤联合甲氨蝶呤治疗类风湿关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 648-652.
[3] 高玲, 于哲, 范然, 臧银善. 外周血细胞计数比值评估类风湿关节炎疗效的价值[J]. 中华关节外科杂志(电子版), 2023, 17(05): 642-647.
[4] 刘鹏, 周莹佳, 常彦峰, 甄平, 李生贵, 刘军, 周胜虎. 类风湿关节炎行关节置换围术期风险管理的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 540-548.
[5] 常洁文, 于亚男, 米亚儒, 邓荷萍. 超声成像技术在膝关节疾病中的应用现状[J]. 中华关节外科杂志(电子版), 2023, 17(03): 404-408.
[6] 李兴, 李震, 肖方骏, 翁家贤, 潘建科, 何沛恒, 苏海涛. 微小RNA-27b-3p与基质金属蛋白酶13在人软骨细胞的对应关系[J]. 中华关节外科杂志(电子版), 2022, 16(04): 431-440.
[7] 任占芬, 杨金良, 罗寰, 闫静, 左路广, 赵悦, 王建芳. 类风湿性关节炎继发骨质疏松患者血清指标与骨代谢的关系[J]. 中华关节外科杂志(电子版), 2022, 16(04): 399-405.
[8] 严邦胜, 毛月芹, 吴广鹏, 潘艳华. 关节镜滑膜切除术治疗难治性类风湿关节炎的效果[J]. 中华关节外科杂志(电子版), 2021, 15(05): 628-632.
[9] 曾广吾, 董时纯, 陈健, 张强. 全膝关节置换术在类风湿关节炎的应用效果分析[J]. 中华关节外科杂志(电子版), 2021, 15(03): 359-363.
[10] 蒲娇, 龚忠诚. 细胞焦亡在糖尿病牙周炎中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 189-192.
[11] 徐纪文, 徐静雅, 宗斌, 马爽. COPD并发肺部感染TLR4/NF-κB通路与细胞因子水平及意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 221-223.
[12] 雷豆豆, 何浩强, 商怡丰, 郑立, 高明. 芒果苷对骨关节炎的潜在治疗机制:通过抑制巨噬细胞NF-κB调节巨噬细胞M2极化[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 33-38.
[13] 刘志勇, 任德启, 郭健, 赵彦青, 杨明辉, 李锋森, 成家宏. 基于TLR4/NF-κB通路探究益气活血清热解毒方对动脉粥样硬化模型大鼠的干预效果[J]. 中华临床医师杂志(电子版), 2022, 16(04): 349-355.
[14] 蒲友敏, 赵洪雯, 申兵冰, 周强, 谢攀, 吴雄飞. TRPC6靶向miR-214负调控Caspase-1表达以改善肾缺血再灌注损伤的机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(01): 84-93.
[15] 阳泽宇, 杨霞, 王嘉伟, 谭兴领, 张敏敏, 宁宗. GSDMD依赖性细胞焦亡在毒蛇咬伤患者中的表达[J]. 中华临床医师杂志(电子版), 2021, 15(03): 187-190.
阅读次数
全文


摘要