[1] |
Carbone A, Rodeo S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries[J]. J Orthop Res, 2017, 35(3): 397-405.
|
[2] |
Bobes AC, Issa-Khozouz SP, Fernandez-Matias R, et al. Comparison of blood flow restriction training versus Non-Occlusive training in patients with anterior cruciate ligament Reconstruction or knee osteoarthritis:a systematic review[J]. J Clin Med, 2020, 10(1): 68-90.
|
[3] |
Lohmander LS, Ostenberg A, Englund M, et al. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury[J]. Arthritis Rheum, 2004, 50(10): 3145-3152.
|
[4] |
赵瑞鹏,王少伟,李鹏翠,等.α-2巨球蛋白在急性创伤性骨关节炎及相关疾病中的研究进展[J/CD].中华关节外科杂志(电子版),2018,12(4):87-90.
|
[5] |
Fang H, Huang L, Welch I, et al. Early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis[J]. Sci Rep, 2018, 8(1): 2855-2863.
|
[6] |
Gomoll AH, Madry H, Knutsen G, et al. The subchondral bone in articular cartilage repair: current problems in the surgical management[J]. Knee Surg Sports Traumatol Arthrosc, 2010, 18(4): 434-447.
|
[7] |
Adebayo OO, Ko FC, Wan PT, et al. Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice[J]. Osteoarthritis Cartilage, 2017, 25(12): 2108-2118.
|
[8] |
Barr AJ, Campbell TM, Hopkinson D, et al. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis[J]. Arthritis Res Ther, 2015, 17(1): 228-263.
|
[9] |
Wei Y, Bai L. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis[J]. Connect Tissue Res, 2016, 57(4): 245-261.
|
[10] |
Stewart HL, Kawcak CE. The importance of subchondral bone in the pathophysiology of osteoarthritis[J]. Front Vet Sci, 2018, 5(8): 178-186.
|
[11] |
Vina ER, Kwoh CK. Epidemiology of osteoarthritis: literature update[J]. Curr Opin Rheumatol, 2018, 30(2): 160-167.
|
[12] |
Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ[J]. Arthritis Rheum, 2012, 64(6): 1697-1707.
|
[13] |
Jiménez G, Cobo-Molinos J, Antich C, et al. Osteoarthritis: trauma vs disease[J]. Adv Exp Med Biol, 2018, 1059(5): 63-83.
|
[14] |
Goldring SR. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis[J]. Ther Adv Musculoskelet Dis, 2012, 4(4): 249-258.
|
[15] |
Li G, Yin J, Gao J, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes[J]. Arthritis Res Ther, 2013, 15(6): 223-234.
|
[16] |
Coughlin TR, Kennedy OD. The role of subchondral bone damage in post-traumatic osteoarthritis[J]. Ann NY Acad Sci, 2016, 1383(1): 58-66.
|
[17] |
Birch CE, Mensch KS, Desarno MJ, et al. Subchondral trabecular bone integrity changes following ACL injury and reconstruction: a cohort study with a nested, matched case-control analysis[J]. Osteoarthritis Cartilage, 2018, 26(6): 762-769.
|
[18] |
Mcculloch K, Huesa C, Dunning L, et al. Accelerated post traumatic osteoarthritis in a dual injury murine model[J]. Osteoarthritis Cartilage, 2019, 27(12): 1800-1810.
|
[19] |
Bertuglia A, Lacourt M, Girard C, et al. Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and May contribute to cartilage degradation[J]. Osteoarthritis Cartilage, 2016, 24(3): 555-566.
|
[20] |
Torres AM, Matheny JB, Keaveny TM, et al. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure[J]. Proc Natl Acad Sci USA, 2016, 113(11): 2892-2897.
|
[21] |
Niedermair T, Schirner S, Seebröker R, et al. Substance P modulates bone remodeling properties of murine osteoblasts and osteoclasts[J]. Sci Rep, 2018, 8(1): 9199-9213.
|
[22] |
Maerz T, Kurdziel M, Newton MD, et al. Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2016, 24(4): 698-708.
|
[23] |
Zarka M, Hay E, Ostertag A, et al. Microcracks in subchondral bone plate is linked to less cartilage damage[J]. Bone, 2019, 123(6): 1-7.
|
[24] |
Kennedy OD, Herman BC, Laudier DM, et al. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations[J]. Bone, 2012, 50(5): 1115-1122.
|
[25] |
Aho OM, Finnilä M, Thevenot J, et al. Subchondral bone histology and grading in osteoarthritis[J/OL]. PLoS One, 2017, 12(3): e0173726. DOI: 10.1371/journal.pone.0173726.
|
[26] |
Chan P, Wen C, Yang WC, et al. Is subchondral bone cyst formation in non-load-bearing region of osteoarthritic knee a vascular problem?[J]. Med Hypotheses, 2017, 109(12): 80-83.
|
[27] |
Mcerlain DD, Ulici V, Darling M, et al. An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis[J/OL]. Arthritis Res Ther, 2012, 14(1): R26-R37. DOI: 10.1186/ar3727.
|
[28] |
Chiba K, Nango N, Kubota S, et al. Relationship between microstructure and degree of mineralization in subchondral bone of osteoarthritis:a synchrotron radiation microCT study[J]. J Bone Miner Res, 2012, 27(7): 1511-1517.
|
[29] |
Donell S. Subchondral bone remodelling in osteoarthritis[J]. EFORT Open Rev, 2019, 4(6): 221-229.
|
[30] |
Selvarajah L, Curtis AM, Kennedy OD. Bone microdamage in acute knee injury[J]. Curr Rheumatol Rep, 2018, 20(12): 89-94.
|
[31] |
Alliston T, Hernandez CJ, Findlay DM, et al. Bone marrow lesions in osteoarthritis: what lies beneath[J]. J Orthop Res, 2018, 36(7): 1818-1825.
|
[32] |
Yusup A, Kaneko H, Liu L, et al. Bone marrow lesions, subchondral bone cysts and subchondral bone attrition are associated with histological synovitis in patients with end-stage knee osteoarthritis: a cross-sectional study[J]. Osteoarthritis Cartilage, 2015, 23(11): 1858-1864.
|
[33] |
Klement MR, Sharkey PF. The significance of osteoarthritis-associated bone marrow lesions in the knee[J]. J Am Acad Orthop Surg, 2019, 27(20): 752-759.
|
[34] |
Kates SL, Ackert-Bicknell CL. How do bisphosphonates affect fracture healing?[J]. Injury, 2016, 47(Suppl 1): S65-S68.
|
[35] |
Hayami T, Pickarski M, Wesolowski GA, et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model[J]. Arthritis Rheum, 2004, 50(4): 1193-1206.
|
[36] |
Han W, Fan S, Bai X, et al. Strontium ranelate, a promising disease modifying osteoarthritis drug[J]. Expert Opin Investig Drugs, 2017, 26(3): 375-380.
|
[37] |
Morita Y, Ito H, Ishikawa M, et al. Subchondral bone fragility with meniscal tear accelerates and parathyroid hormone decelerates articular cartilage degeneration in rat osteoarthritis model[J]. J Orthop Res, 2018, 36(7): 1959-1968.
|
[38] |
Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311.
|
[39] |
杨明义,苏亚妮,马尧,等.以软骨下骨硬化为靶点的骨关节炎治疗研究进展[J/CD].中华关节外科杂志(电子版),2021,15(2):209-213.
|
[40] |
Wen ZH, Tang CC, Chang YC, et al. Calcitonin attenuates cartilage degeneration and nociception in an experimental rat model of osteoarthritis: role of TGF-beta in chondrocytes [J/OL]. Sci Rep, 2016, 6: 28862. DOI: 10.1038/srep28862.
|
[41] |
Gou Y, Tian F, Kong Q, et al. Salmon calcitonin attenuates degenerative changes in cartilage and subchondral bone in lumbar facet joint in an experimental rat model[J]. Med Sci Monit, 2018, 24: 2849-2857.
|
[42] |
Nielsen RH, Bay-Jensen AC, Byrjalsen I, et al. Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover[J]. Osteoarthritis Cartilage, 2011, 19(4): 466-473.
|
[43] |
Chen L, Ye L, Liu H, et al. Extracorporeal shock wave therapy for the treatment of osteoarthritis: a systematic review and meta-analysis[J/OL]. Biomed Res Int, 2020(3): 1907821-1907835. DOI: 10.1155/2020/1907821.
|
[44] |
Rolvien T, Schmidt T, Butscheidt S, et al. Denosumab is effective in the treatment of bone marrow oedema syndrome[J]. Injury, 2017, 48(4): 874-879.
|
[45] |
Wang CJ, Cheng JH, Chou WY, et al. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee[J]. Int J Med Sci, 2017, 14(3): 213-223.
|
[46] |
Hsieh CK, Chang CJ, Liu ZW, et al. Extracorporeal shockwave therapy for the treatment of knee osteoarthritis: a meta-analysis[J]. Int Orthop, 2020, 44(5): 877-884.
|