[1] |
袁伟,赵辉,符培亮,等.三维打印个体化器械在全膝关节置换术中的应用[J/CD].中华关节外科杂志(电子版),2016,10(2):71-73.
|
[2] |
赵之栋,王康,赵瑞鹏,等.3D个性化截骨板辅助全膝关节置换术精准度的荟萃分析[J/CD].中华关节外科杂志(电子版),2018,02(2):231-238.
|
[3] |
Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D printing for the radiologist[J]. Radiographics, 2015, 35(7): 1965-1988.
|
[4] |
Fasel JHD, Aguiar Diego, Kiss-Bodolay D, et al. Adapting anatomy teaching to surgical trends: a combination of classical dissection, medical imaging, and 3D-printing technologies[J]. Surg Radiol Anat, 2016, 38(3): 361-367.
|
[5] |
Muller JH, Li K, Reina N, et al. Sexual and ethnic polymorphism result in considerable mismatch between native trochlear geometry and off-the-shelf TKA prostheses[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(12): 3871-3878.
|
[6] |
Johnson AJ, Costa CR, Mont MA, et al. Do we need gender-specific total joint arthroplasty?[J]. Clin Orthop Relat Res, 2011, 469(7): 1852-1858.
|
[7] |
曲铁兵,曾纪洲,林源,等.华北地区成人正常胫骨内侧平台后倾角的测量及临床意义[J].中华骨科杂志,2003,23(8):455-458.
|
[8] |
Mahoney OM, Kinsey T. Overhang of the femoral component in total knee arthroplasty: risk factors and clinical consequences[J]. J Bone Joint Surg Am, 2010, 92(5): 1115-1121.
|
[9] |
Noble JW, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty[J]. J Arthroplasty, 2012, 27(1): 153-155.
|
[10] |
Vaidya SV, Ranawat CS, Aroojis A, et al. Anthropometric measurements to design total knee prostheses for the Indian population[J]. J Arthroplasty, 2000, 15(1): 79-85.
|
[11] |
Ollivier M, Tribot-Laspiere Q, Amzallag J, et al. Abnormal rate of intraoperative and postoperative implant positioning outliers using " MRI-based patient-specific" compared to " computer assisted" instrumentation in total knee replacement[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(11): 3441-3447.
|
[12] |
Ettinger M, Claassen L, Paes P, et al. 2D versus 3D templating in total knee arthroplasty[J]. Knee, 2016, 23(1): 149-151.
|
[13] |
Berger RA, Crossett LS, Jacobs JJ, et al. Malrotation causing patellofemoral complications after total knee arthroplasty[J]. Clin Orthop Relat Res, 1998, 36(356): 144-153.
|
[14] |
Martin S, Saurez A, Ismaily S, et al. Maximizing tibial coverage is detrimental to proper rotational alignment[J]. Clin Orthop Relat Res, 2014, 472(1): 121-125.
|
[15] |
Schroeder L, Martin G. In vivo tibial fit and rotational analysis of a customized, patient-specific TKA versus off-the-shelf TKA[J]. J Knee Surg, 2019, 32(6): 499-505.
|
[16] |
Sun ML, Zhang Y, Peng Y, et al. Accuracy of a novel 3D-printed patient-specific intramedullary guide to control femoral component rotation in total knee arthroplasty[J]. Orthop Surg, 2020, 12(2): 429-441.
|
[17] |
Yamamura K, Minoda Y, Sugama R, et al. Design improvement in patient-specific instrumentation for total knee arthroplasty improved the accuracy of the tibial prosthetic alignment in the coronal and axial planes[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(5): 1560-1567.
|
[18] |
Gan Y, Ding J, Xu Y, et al. Accuracy and efficacy of osteotomy in total knee arthroplasty with patient-specific navigational template[J]. Int J Clin Exp Med, 2015, 8(8): 12192-12201.
|
[19] |
Ferrara F, Cipriani A, Magarelli NA, et al. Implant positioning in TKA: comparison between conventional and patient-specific instrumentation[J]. Orthopedics, 2015, 38(4): E271-E280.
|
[20] |
牛鸣,马飞,马菊蓉,等.基于3D打印的个性化截骨技术与传统方式行全膝关节表面置换的临床对比[J].南方医科大学学报,2017,37(11):1467-1475.
|
[21] |
Schotanus M, Schoenmakers D, Sollie R, et al. Patient-specific instruments for total knee arthroplasty can accurately predict the component size as used peroperative[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(12): 3844-3848.
|
[22] |
Jones GG, Clarke S, Harris S, et al. A novel patient-specific instrument design can deliver robotic level accuracy in unicompartmental knee arthroplasty[J]. Knee, 2019, 26(6): 1421-1428.
|
[23] |
Sinha RK. The use of customized TKA implants for increased efficiency in the OR[J]. Curr Rev Musculoskelet Med, 2012, 5(4): 296-302.
|
[24] |
Thomas S, Patel A, Patrick C, et al. Total hospital costs and readmission rate of patient-specific instrument in total knee arthroplasty patients[J]. J Knee Surg, 2022, 35(2): 113-121.
|
[25] |
Fitz W. Unicompartmental knee arthroplasty with use of novel patient-specific resurfacing implants and personalized jigs[J]. J Bone Joint Surg Am, 2009, 91 Suppl 1(Suppl.1): 69-76.
|
[26] |
Ha CW, Na S. The correctness of fit of current total knee prostheses compared with intra-operative anthropometric measurements in Korean knees[J]. J Bone Joint Surg Br, 2012, 94(5): 638-641.
|
[27] |
Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation[J]. Knee, 2014, 21(1): 268-271.
|
[28] |
Bali K, Walker P, Bruce W. Custom-fit total knee arthroplasty: our initial experience in 32 knees[J]. J Arthroplasty, 2012, 27(6): 1149-1154.
|
[29] |
Davila JA, Kransdorf MJ, Duffy GP. Surgical planning of total hip arthroplasty: accuracy of computer-assisted EndoMap software in predicting component size[J]. Skeletal Radiol, 2006, 35(6): 390-393.
|
[30] |
León-Muñoz Vicente J, Parrinello Andrea, López-López Mirian, et al. Revision of total knee arthroplasty with the use of patient-specific instruments: an alternative surgical technique[J]. Expert Rev Med Devices, 2020, 17(8): 795-806.
|
[31] |
Bagheri F, Sharifi SR, Mirzadeh NR, et al. Clinical outcome of ream versus unream intramedullary nailing for femoral shaft fractures[J]. Iran Red Crescent Med J, 2013, 15(5): 432-435.
|
[32] |
余华晨,张宇.Paulwong. 个性化截骨工具与传统人工全膝关节置换治疗膝骨关节炎的临床对照试验[J].中国骨伤,2016,29(6):513-516.
|
[33] |
Giannotti S, Sacchetti F, Citarelli C, et al. Single-use, patient-specific instrumentation technology in knee arthroplasty: a comparative study between standard instrumentation and PSI efficiency system[J]. Musculoskelet Surg, 2020, 104(2): 195-200.
|
[34] |
Schwarzkopf R, Brodsky M, Garcia GA, et al. Surgical and functional outcomes in patients undergoing total knee replacement with patient-specific implants compared with " off-the-shelf" implants[J/OL]. Orthop J Sports Med, 2015, 3(7): 2325967115590379. DOI: 10.1177/2325967115590379.
|
[35] |
Zhou F, Xue F, Zhang S. The application of 3D printing patient specific instrumentation model in total knee arthroplasty[J]. Saudi J Biol Sci, 2020, 27(5): 1217-1221.
|
[36] |
Reimann P, Brucker M, Arbab D, et al. Patient satisfaction -a comparison between patient-specific implants and conventional total knee arthroplasty[J]. J Orthop, 2019, 16(3): 273-277.
|
[37] |
Shih KS, Lin CC, Lu HL, et al. Patient-specific instrumentation improves functional kinematics of minimally-invasive total knee replacements as revealed by computerized 3D fluoroscopy[J/OL]. Comput Methods Programs Biomed, 2020, 188:105250. DOI: 10.1016/j.cmpb.2019.105250.
|
[38] |
Meheux Carlos J, Park Kwan J, Clyburn Terry A. A retrospective study comparing a patient-specific design total knee arthroplasty with an off-the-shelf design: unexpected catastrophic failure seen in the early patient-specific design[J/OL]. J Am Acad Orthop Surg Glob Res Rev. 2019, 3(11): e10.5435. DOI: 10.5435/JAAOSGlobal-D-19-00143.
|
[39] |
Abane L, Anract P, Boisgard S, et al. A comparison of patient-specific and conventional instrumentation for total knee anthroplasty:a multicentre randomised controlled trial[J]. Bone Joint J, 2015, 97B(1): 56-63.
|
[40] |
Talmo CT, Anderson MC, Jia ES, et al. High rate of early revision after Custom-Made unicondylar knee arthroplasty[J]. J Arthroplasty, 2018, 33(7S): S100-S104.
|
[41] |
Sikorski JM. Alignment in total knee replacement[J]. J Bone Joint Surg Br, 2008, 90(9): 1121-1127.
|
[42] |
Cerquiglini A, Henckel J, Hothi H, et al. 3D patient imaging and retrieval analysis help understand the clinical importance of rotation in knee replacements[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(11): 3351-3361.
|
[43] |
Schotanus MGM, Boonen B, van der Weegen W, et al. No difference in mid-term survival and clinical outcome between patient-specific and conventional instrumented total knee arthroplasty: a randomized controlled trial[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27 (5): 1463-1468.
|
[44] |
Griffin FM, Math K, Scuderi GR, et al. Anatomy of the epicondyles of the distal femur: MRI analysis of normal knees[J]. J Arthroplasty, 2000, 15(3): 354-359.
|
[45] |
Chan WP, Lang P, Stevens MP, et al. Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity[J]. AJR Am J Roentgenol, 1991, 157(4): 799-806.
|
[46] |
黄敏,覃兴婕,李清园.MRI运动伪影校正方法与实现[J].磁共振成像,2013,4(4):286-290.
|
[47] |
Steklov N, Slamin J, Srivastav S, et al. Unicompartmental knee resurfacing: enlarged tibio-femoral contact area and reduced contact stress using novel patient-derived geometries[J]. Open Biomed, 2010, 4: 85-92.
|
[48] |
Koh YG, Park KM, Lee HY, et al. Prediction of wear performance in femoral and tibial conformity in patient-specific cruciate-retaining total knee arthroplasty[J/OL]. J Orthop Surg Res, 2020, 15(1): 24. DOI: 10.1186/s13018-020-1548-4.
|
[49] |
Koh YG, Jung KH, Hong HT, et al. Optimal design of Patient-Specific total knee arthroplasty for improvement in wear performance[J/OL]. J Clin Med, 2019, 8(11): 2023. DOI: 10.3390/jcm8112023.
|
[50] |
Koh YG, Lee JA, Lee HY, et al. Computational wear prediction of insert conformity and material on mobile-bearing unicompartmental knee arthroplasty[J]. Bone Joint Res, 2019, 8(11): 563-569.
|
[51] |
Bragdon CR, Jasty M, Muratoglu OK, et al. Third-body wear of highly cross-linked polyethylene in a hip simulator[J]. J Arthroplasty,2003, 18(5): 553-561.
|