切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (02) : 208 -212. doi: 10.3877/cma.j.issn.1674-134X.2022.02.011

综述

基于个性化手术导航模板辅助的人工全膝关节置换
吴宜璟1, 徐杰2,()   
  1. 1. 350122 福州,福建医科大学省立临床医学院
    2. 350013 福州,福建省立医院,福建医科大学
  • 收稿日期:2021-03-27 出版日期:2022-04-01
  • 通信作者: 徐杰

Application of patient-specific instruments in total knee arthroplasty

Yijing Wu1, Jie Xu2,()   

  1. 1. Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350122, China
    2. Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350013, China
  • Received:2021-03-27 Published:2022-04-01
  • Corresponding author: Jie Xu
引用本文:

吴宜璟, 徐杰. 基于个性化手术导航模板辅助的人工全膝关节置换[J]. 中华关节外科杂志(电子版), 2022, 16(02): 208-212.

Yijing Wu, Jie Xu. Application of patient-specific instruments in total knee arthroplasty[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(02): 208-212.

基于计算机辅助设计技术以及医学图像三维重建技术指导下的个性化手术导航模板(PSI),近年来随着精准医学的快速发展在人工全膝关节置换术中逐渐得到广泛应用。与传统全膝关节置换术相比,PSI可术前构建模型并提高关节假体位置及其尺寸的准确性,明显减少术后脂肪栓塞综合征发生率和术中失血量,缩短手术时间,并且在术后功能恢复结果方面也有改善,但在术后并发症以及中远期生存率方面并未体现明显优势。本文将从PSI的优劣势对其进行全面综述。

Patient-specific instruments (PSI) based on computer aided design technology and medical image three-dimensional reconstruction technology have been widely applied in total knee arthroplasty with the rapid development of precision medicine recently. Compared with conventional total knee arthroplasty, PSI can construct the model before operation then improve the accuracy of the placement and size of the joint prosthesis, reduce the incidence of postoperative fat embolism syndrome and the volume of intraoperative blood loss significantly, shorten the operation time, and improves postoperative functional evaluations. But there is no remarkable advantage in terms of postoperative complications and mid- or long-term survival rates. This article made a comprehensive review of PSI regarding its advantages and disadvantages.

[1]
袁伟,赵辉,符培亮,等.三维打印个体化器械在全膝关节置换术中的应用[J/CD].中华关节外科杂志(电子版)201610(2):71-73.
[2]
赵之栋,王康,赵瑞鹏,等.3D个性化截骨板辅助全膝关节置换术精准度的荟萃分析[J/CD].中华关节外科杂志(电子版)201802(2):231-238.
[3]
Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D printing for the radiologist[J]. Radiographics, 2015, 35(7): 1965-1988.
[4]
Fasel JHD, Aguiar Diego, Kiss-Bodolay D, et al. Adapting anatomy teaching to surgical trends: a combination of classical dissection, medical imaging, and 3D-printing technologies[J]. Surg Radiol Anat, 2016, 38(3): 361-367.
[5]
Muller JH, Li K, Reina N, et al. Sexual and ethnic polymorphism result in considerable mismatch between native trochlear geometry and off-the-shelf TKA prostheses[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(12): 3871-3878.
[6]
Johnson AJ, Costa CR, Mont MA, et al. Do we need gender-specific total joint arthroplasty?[J]. Clin Orthop Relat Res, 2011, 469(7): 1852-1858.
[7]
曲铁兵,曾纪洲,林源,等.华北地区成人正常胫骨内侧平台后倾角的测量及临床意义[J].中华骨科杂志200323(8):455-458.
[8]
Mahoney OM, Kinsey T. Overhang of the femoral component in total knee arthroplasty: risk factors and clinical consequences[J]. J Bone Joint Surg Am, 2010, 92(5): 1115-1121.
[9]
Noble JW, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty[J]. J Arthroplasty, 2012, 27(1): 153-155.
[10]
Vaidya SV, Ranawat CS, Aroojis A, et al. Anthropometric measurements to design total knee prostheses for the Indian population[J]. J Arthroplasty, 2000, 15(1): 79-85.
[11]
Ollivier M, Tribot-Laspiere Q, Amzallag J, et al. Abnormal rate of intraoperative and postoperative implant positioning outliers using " MRI-based patient-specific" compared to " computer assisted" instrumentation in total knee replacement[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(11): 3441-3447.
[12]
Ettinger M, Claassen L, Paes P, et al. 2D versus 3D templating in total knee arthroplasty[J]. Knee, 2016, 23(1): 149-151.
[13]
Berger RA, Crossett LS, Jacobs JJ, et al. Malrotation causing patellofemoral complications after total knee arthroplasty[J]. Clin Orthop Relat Res, 1998, 36(356): 144-153.
[14]
Martin S, Saurez A, Ismaily S, et al. Maximizing tibial coverage is detrimental to proper rotational alignment[J]. Clin Orthop Relat Res, 2014, 472(1): 121-125.
[15]
Schroeder L, Martin G. In vivo tibial fit and rotational analysis of a customized, patient-specific TKA versus off-the-shelf TKA[J]. J Knee Surg, 2019, 32(6): 499-505.
[16]
Sun ML, Zhang Y, Peng Y, et al. Accuracy of a novel 3D-printed patient-specific intramedullary guide to control femoral component rotation in total knee arthroplasty[J]. Orthop Surg, 2020, 12(2): 429-441.
[17]
Yamamura K, Minoda Y, Sugama R, et al. Design improvement in patient-specific instrumentation for total knee arthroplasty improved the accuracy of the tibial prosthetic alignment in the coronal and axial planes[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(5): 1560-1567.
[18]
Gan Y, Ding J, Xu Y, et al. Accuracy and efficacy of osteotomy in total knee arthroplasty with patient-specific navigational template[J]. Int J Clin Exp Med, 2015, 8(8): 12192-12201.
[19]
Ferrara F, Cipriani A, Magarelli NA, et al. Implant positioning in TKA: comparison between conventional and patient-specific instrumentation[J]. Orthopedics, 2015, 38(4): E271-E280.
[20]
牛鸣,马飞,马菊蓉,等.基于3D打印的个性化截骨技术与传统方式行全膝关节表面置换的临床对比[J].南方医科大学学报201737(11):1467-1475.
[21]
Schotanus M, Schoenmakers D, Sollie R, et al. Patient-specific instruments for total knee arthroplasty can accurately predict the component size as used peroperative[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(12): 3844-3848.
[22]
Jones GG, Clarke S, Harris S, et al. A novel patient-specific instrument design can deliver robotic level accuracy in unicompartmental knee arthroplasty[J]. Knee, 2019, 26(6): 1421-1428.
[23]
Sinha RK. The use of customized TKA implants for increased efficiency in the OR[J]. Curr Rev Musculoskelet Med, 2012, 5(4): 296-302.
[24]
Thomas S, Patel A, Patrick C, et al. Total hospital costs and readmission rate of patient-specific instrument in total knee arthroplasty patients[J]. J Knee Surg, 2022, 35(2): 113-121.
[25]
Fitz W. Unicompartmental knee arthroplasty with use of novel patient-specific resurfacing implants and personalized jigs[J]. J Bone Joint Surg Am, 2009, 91 Suppl 1(Suppl.1): 69-76.
[26]
Ha CW, Na S. The correctness of fit of current total knee prostheses compared with intra-operative anthropometric measurements in Korean knees[J]. J Bone Joint Surg Br, 2012, 94(5): 638-641.
[27]
Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation[J]. Knee, 2014, 21(1): 268-271.
[28]
Bali K, Walker P, Bruce W. Custom-fit total knee arthroplasty: our initial experience in 32 knees[J]. J Arthroplasty, 2012, 27(6): 1149-1154.
[29]
Davila JA, Kransdorf MJ, Duffy GP. Surgical planning of total hip arthroplasty: accuracy of computer-assisted EndoMap software in predicting component size[J]. Skeletal Radiol, 2006, 35(6): 390-393.
[30]
León-Muñoz Vicente J, Parrinello Andrea, López-López Mirian, et al. Revision of total knee arthroplasty with the use of patient-specific instruments: an alternative surgical technique[J]. Expert Rev Med Devices, 2020, 17(8): 795-806.
[31]
Bagheri F, Sharifi SR, Mirzadeh NR, et al. Clinical outcome of ream versus unream intramedullary nailing for femoral shaft fractures[J]. Iran Red Crescent Med J, 2013, 15(5): 432-435.
[32]
余华晨,张宇.Paulwong. 个性化截骨工具与传统人工全膝关节置换治疗膝骨关节炎的临床对照试验[J].中国骨伤201629(6):513-516.
[33]
Giannotti S, Sacchetti F, Citarelli C, et al. Single-use, patient-specific instrumentation technology in knee arthroplasty: a comparative study between standard instrumentation and PSI efficiency system[J]. Musculoskelet Surg, 2020, 104(2): 195-200.
[34]
Schwarzkopf R, Brodsky M, Garcia GA, et al. Surgical and functional outcomes in patients undergoing total knee replacement with patient-specific implants compared with " off-the-shelf" implants[J/OL]. Orthop J Sports Med, 2015, 3(7): 2325967115590379. DOI: 10.1177/2325967115590379.
[35]
Zhou F, Xue F, Zhang S. The application of 3D printing patient specific instrumentation model in total knee arthroplasty[J]. Saudi J Biol Sci, 2020, 27(5): 1217-1221.
[36]
Reimann P, Brucker M, Arbab D, et al. Patient satisfaction -a comparison between patient-specific implants and conventional total knee arthroplasty[J]. J Orthop, 2019, 16(3): 273-277.
[37]
Shih KS, Lin CC, Lu HL, et al. Patient-specific instrumentation improves functional kinematics of minimally-invasive total knee replacements as revealed by computerized 3D fluoroscopy[J/OL]. Comput Methods Programs Biomed, 2020, 188:105250. DOI: 10.1016/j.cmpb.2019.105250.
[38]
Meheux Carlos J, Park Kwan J, Clyburn Terry A. A retrospective study comparing a patient-specific design total knee arthroplasty with an off-the-shelf design: unexpected catastrophic failure seen in the early patient-specific design[J/OL]. J Am Acad Orthop Surg Glob Res Rev. 2019, 3(11): e10.5435. DOI: 10.5435/JAAOSGlobal-D-19-00143.
[39]
Abane L, Anract P, Boisgard S, et al. A comparison of patient-specific and conventional instrumentation for total knee anthroplasty:a multicentre randomised controlled trial[J]. Bone Joint J, 2015, 97B(1): 56-63.
[40]
Talmo CT, Anderson MC, Jia ES, et al. High rate of early revision after Custom-Made unicondylar knee arthroplasty[J]. J Arthroplasty, 2018, 33(7S): S100-S104.
[41]
Sikorski JM. Alignment in total knee replacement[J]. J Bone Joint Surg Br, 2008, 90(9): 1121-1127.
[42]
Cerquiglini A, Henckel J, Hothi H, et al. 3D patient imaging and retrieval analysis help understand the clinical importance of rotation in knee replacements[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(11): 3351-3361.
[43]
Schotanus MGM, Boonen B, van der Weegen W, et al. No difference in mid-term survival and clinical outcome between patient-specific and conventional instrumented total knee arthroplasty: a randomized controlled trial[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27 (5): 1463-1468.
[44]
Griffin FM, Math K, Scuderi GR, et al. Anatomy of the epicondyles of the distal femur: MRI analysis of normal knees[J]. J Arthroplasty, 2000, 15(3): 354-359.
[45]
Chan WP, Lang P, Stevens MP, et al. Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity[J]. AJR Am J Roentgenol, 1991, 157(4): 799-806.
[46]
黄敏,覃兴婕,李清园.MRI运动伪影校正方法与实现[J].磁共振成像20134(4):286-290.
[47]
Steklov N, Slamin J, Srivastav S, et al. Unicompartmental knee resurfacing: enlarged tibio-femoral contact area and reduced contact stress using novel patient-derived geometries[J]. Open Biomed, 2010, 4: 85-92.
[48]
Koh YG, Park KM, Lee HY, et al. Prediction of wear performance in femoral and tibial conformity in patient-specific cruciate-retaining total knee arthroplasty[J/OL]. J Orthop Surg Res, 2020, 15(1): 24. DOI: 10.1186/s13018-020-1548-4.
[49]
Koh YG, Jung KH, Hong HT, et al. Optimal design of Patient-Specific total knee arthroplasty for improvement in wear performance[J/OL]. J Clin Med, 2019, 8(11): 2023. DOI: 10.3390/jcm8112023.
[50]
Koh YG, Lee JA, Lee HY, et al. Computational wear prediction of insert conformity and material on mobile-bearing unicompartmental knee arthroplasty[J]. Bone Joint Res, 2019, 8(11): 563-569.
[51]
Bragdon CR, Jasty M, Muratoglu OK, et al. Third-body wear of highly cross-linked polyethylene in a hip simulator[J]. J Arthroplasty2003, 18(5): 553-561.
[1] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[2] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[3] 黄子荣, 罗渝鑫, 杨文瀚, 陈小虎, 谢环宇, 朱伟民. 前交叉韧带重建对膝关节稳定性影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 847-854.
[4] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[5] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[6] 孟繁宇, 周新社, 赵志, 裴立家, 刘犇. 侧位直接前方入路髋关节置换治疗偏瘫肢体股骨颈骨折[J]. 中华关节外科杂志(电子版), 2023, 17(06): 865-870.
[7] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[8] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[9] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[10] 李辉, 吴奇, 张子琦, 张晗, 王仿, 许鹏. 日间全膝关节置换术早期疗效及标准化流程探索[J]. 中华关节外科杂志(电子版), 2023, 17(06): 889-892.
[11] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[12] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[13] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[14] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
[15] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
阅读次数
全文


摘要