[1] |
Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis[J]. Clin Sports Med, 2005, 24(1): 1-12.
|
[2] |
Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation[J]. Instr Course Lect, 1998, 47: 487-504.
|
[3] |
Libicher M, Ivancic M, Hoffmann M, et al. Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging[J]. Eur Radiol, 2005, 15(2): 390-394.
|
[4] |
Muraoka T, Hagino H, Okano T, et al. Role of subchondral bone in osteoarthritis development: a comparative study of two strains of guinea pigs with and without spontaneously occurring osteoarthritis[J]. Arthritis Rheum, 2007, 56(10): 3366-3374.
|
[5] |
Anderson-Mackenzie JM, Quasnichka HL, Starr RL, et al. Fundamental subchondral bone changes in spontaneous knee osteoarthritis[J]. Int J Biochem Cell Biol, 2005, 37(1): 224-236.
|
[6] |
Benske J, Schünke M, Tillmann B. Subchondral bone formation in arthrosis. Polychrome labeling studies in mice[J]. Acta Orthop Scand, 1988, 59(5): 536-541.
|
[7] |
Cornish J, Callon K, Lin CQ, et al. Comparison of the effects of calcitonin gene-related peptide and amylin on osteoblasts[J]. J Bone Miner Res, 1999, 14(8): 1302-1309.
|
[8] |
Ballica R, Valentijn K, Khachatryan A, et al. Targeted expression of calcitonin gene-related peptide to osteoblasts increases bone density in mice[J]. J Bone Miner Res, 1999, 14(7): 1067-1074.
|
[9] |
Glowka TR, Steinebach A, Stein K, et al. The novel CGRP receptor antagonist BIBN4096BS alleviates a postoperative intestinal inflammation and prevents postoperative ileus[J]. Neurogastroenterol Motil, 2015, 27(7): 1038-1049.
|
[10] |
Nakasa T, Ishikawa M, Takada T, et al. Attenuation of cartilage degeneration by calcitonin gene-related paptide receptor antagonist via inhibition of subchondral bone sclerosis in osteoarthritis mice[J]. J Orthop Res, 2016, 34(7): 1177-1184.
|
[11] |
Lin C, Shao Y, Zeng C, et al. Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post-traumatic osteoarthritis[J]. J Cell Physiol, 2018, 233(8): 6135-6147.
|
[12] |
Zhang Z, Huckle J, Francomano CA, et al. The influence of pulsed low-intensity ultrasound on matrix production of chondrocytes at different stages of differentiation: an explant study[J]. Ultrasound Med Biol, 2002, 28(11/12): 1547-1553.
|
[13] |
Naito K, Watari T, Muta T, et al. Low-intensity pulsed ultrasound (LIPUS) increases the articular cartilage type II collagen in a rat osteoarthritis model[J]. J Orthop Res, 2010, 28(3): 361-369.
|
[14] |
Korstjens CM, Van Der Rijt R, Albers G, et al. Low-intensity pulsed ultrasound affects human articular chondrocytes in vitro[J]. Med Biol Eng Comput, 2008, 46(12): 1263-1270.
|
[15] |
Zhang ZJ, Huckle J, Francomano CA, et al. The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production[J]. Ultrasound Med Biol, 2003, 29(11): 1645-1651.
|
[16] |
Lacourt M, Gao C, Li A, et al. Relationship between cartilage and subchondral bone lesions in repetitive impact trauma-induced equine osteoarthritis[J]. Osteoarthritis Cartilage, 2012, 20(6): 572-583.
|
[17] |
Jaiprakash A, Prasadam I, Feng JQ, et al. Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis[J]. Int J Biol Sci, 2012, 8(3): 406-417.
|
[18] |
Sharma AR, Jagga S, Lee SS, et al. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis[J]. Int J Mol Sci, 2013, 14(10): 19805-19830.
|
[19] |
Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis[J]. Trends Pharmacol Sci, 2014, 35(5): 227-236.
|
[20] |
Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J]. Nat Med, 2013, 19(6): 704-712.
|
[21] |
Yuan XL, Meng HY, Wang YC, et al. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies[J]. Osteoarthritis Cartilage, 2014, 22(8): 1077-1089.
|
[22] |
Li XF, Sun YL, Zhou ZL, et al. Mitigation of articular cartilage degeneration and subchondral bone sclerosis in osteoarthritis progression using low-intensity ultrasound stimulation[J]. Ultrasound Med Biol, 2019, 45(1): 148-159.
|
[23] |
Mei LF, Yun FL, Yi Z, et al. Effect of metformin on inflammatory cytokine and apoptosis induced by lipopolysaccharide in THP-1 cells[J]. Chin J Endocrinol Metab, 2013, 29(9): 801-805.
|
[24] |
Sag D, Carling D, Stout RD, et al. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype[J]. J Immunol, 2008, 181(7): 8633-8641.
|
[25] |
冯晓峰,张荣凯,祁伟仲,等. 二甲双胍干预骨关节炎模型小鼠早期骨关节炎软骨及软骨下骨变化[J]. 中国组织工程研究,2019, 23(19): 3031-3036.
|
[26] |
Okura T, Matsushita M, Mishima K, et al. Activated FGFR3 prevents subchondral bone sclerosis during the development of osteoarthritis in transgenic mice with achondroplasia[J]. J Orthop Res, 2018, 36(1): 300-308.
|
[27] |
Lin C, Liu L, Zeng C, et al. Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12[J/OL]. Bone Res, 2019, 7(5): 1-13. doi: 10.1038/s41413-018-0041-8.
|
[28] |
Yoo YM, Kwag JH, Kim KH, et al. Effects of neuropeptides and mechanical loading on bone cell resorption in vitro[J]. Int J Mol Sci, 2014, 15(4): 5874-5883.
|
[29] |
Persson E, Lerner UH. The neuropeptide VIP regulates the expression of osteoclastogenic factors in osteoblasts[J]. J Cell Biochem, 2011, 112(12): 3732-3741.
|
[30] |
Mukohyama H, Ransjö M, Taniguchi H, et al. The inhibitory effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide on osteoclast formation are associated with upregulation of osteoprotegerin and downregulation of RANKL and RANK[J]. Biochem Biophys Res Commun, 2000, 271(1): 158-163.
|
[31] |
Kanemitsu M, Nakasa T, Shirakawa Y, et al. Role of vasoactive intestinal peptide in the progression of osteoarthritis through bone sclerosis and angiogenesis in subchondral bone[J]. J Orthop Sci, 2020, 25(5): 897-906.
|
[32] |
黄文杰,刘洪江,欧建锋. 软骨下骨骨吸收陷窝对骨关节炎的影响及中药干预研究[J]. 新中医,2010, 42(2): 96-98.
|
[33] |
李钊. 梁祖建,张百挡,等. 补肾通络方调控软骨下骨骨重塑保护关节软骨的机制研究[J]. 新中医,2010, 42(8): 120-123.
|