切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 209 -213. doi: 10.3877/cma.j.issn.1674-134X.2021.02.012

所属专题: 文献

综述

以软骨下骨硬化为靶点的骨关节炎治疗研究进展
杨明义1, 苏亚妮2, 马尧1, 许珂3, 何昌军1, 黄王利1, 李庆达1, 任小宇3, 郝博1, 许鹏3,()   
  1. 1. 716000 延安大学;710054 西安交通大学附属红会医院关节重建科
    2. 716000 延安大学
    3. 710054 西安交通大学附属红会医院关节重建科
  • 收稿日期:2020-07-27 出版日期:2021-04-01
  • 通信作者: 许鹏
  • 基金资助:
    国家自然科学基金(81772410,81601877); 中国博士后科学基金(2020M673454)

Research progress in treatment of osteoarthritis targeting subchondral bone sclerosis

Mingyi Yang1, Yani Su2, Yao Ma1, Ke Xu3, Changjun He1, Wangli Huang1, Qingda Li1, Xiaoyu Ren3, Bo Hao1, Peng Xu3,()   

  1. 1. Yan ′an university, Yan′an 716000, China; Joint Reconstruction Department, Honghui Hospital, Xi′an Jiaotong University, Xi′an 710054, China
    2. Yan ′an university, Yan′an 716000, China
    3. Joint Reconstruction Department, Honghui Hospital, Xi′an Jiaotong University, Xi′an 710054, China
  • Received:2020-07-27 Published:2021-04-01
  • Corresponding author: Peng Xu
引用本文:

杨明义, 苏亚妮, 马尧, 许珂, 何昌军, 黄王利, 李庆达, 任小宇, 郝博, 许鹏. 以软骨下骨硬化为靶点的骨关节炎治疗研究进展[J]. 中华关节外科杂志(电子版), 2021, 15(02): 209-213.

Mingyi Yang, Yani Su, Yao Ma, Ke Xu, Changjun He, Wangli Huang, Qingda Li, Xiaoyu Ren, Bo Hao, Peng Xu. Research progress in treatment of osteoarthritis targeting subchondral bone sclerosis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2021, 15(02): 209-213.

骨关节炎(OA)是以关节软骨退变、软骨下骨硬化为主要特征的关节退行性疾病。病理特点为关节软骨变性破坏、软骨下骨硬化或囊性变、关节边缘骨质增生、滑膜病变、关节囊挛缩、韧带松弛或挛缩、肌肉萎缩无力等。近年来研究发现软骨下骨硬化是OA的一个病因,软骨下骨硬化优于并加速软骨退变,进而加速OA的发生发展。抑制或延缓软骨下骨硬化对于OA的治疗具有重大的意义。本文针对以软骨下骨硬化为靶点的OA治疗研究进展进行综述,为后续基础研究及临床工作提供帮助。

Osteoarthritis (OA) is a joint degenerative disease characterized by articular cartilage degeneration and subchondral osteosclerosis. The pathological features were articular cartilage degeneration and destruction, subchondral osteosclerosis or cystic change, articular marginal hyperosteogeny, synovial lesions, articular capsule contracture, ligament relaxation or contracture, muscle atrophy and weakness, etc. In recent years, studies have found that subchondral osteosclerosis is a cause of OA, and subchondral osteosclerosis is superior to and accelerates the degeneration of cartilage, thus accelerating the development of OA. It is of great significance to inhibit or delay subchondral osteosclerosis in the treatment of OA. This article reviewed the research progress of OA treatment with subchondral bone sclerosis as the target, and provides help for follow-up basic research and clinical work.

[1]
Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis[J]. Clin Sports Med, 2005, 24(1): 1-12.
[2]
Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation[J]. Instr Course Lect, 1998, 47: 487-504.
[3]
Libicher M, Ivancic M, Hoffmann M, et al. Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging[J]. Eur Radiol, 2005, 15(2): 390-394.
[4]
Muraoka T, Hagino H, Okano T, et al. Role of subchondral bone in osteoarthritis development: a comparative study of two strains of guinea pigs with and without spontaneously occurring osteoarthritis[J]. Arthritis Rheum, 2007, 56(10): 3366-3374.
[5]
Anderson-Mackenzie JM, Quasnichka HL, Starr RL, et al. Fundamental subchondral bone changes in spontaneous knee osteoarthritis[J]. Int J Biochem Cell Biol, 2005, 37(1): 224-236.
[6]
Benske J, Schünke M, Tillmann B. Subchondral bone formation in arthrosis. Polychrome labeling studies in mice[J]. Acta Orthop Scand, 1988, 59(5): 536-541.
[7]
Cornish J, Callon K, Lin CQ, et al. Comparison of the effects of calcitonin gene-related peptide and amylin on osteoblasts[J]. J Bone Miner Res, 1999, 14(8): 1302-1309.
[8]
Ballica R, Valentijn K, Khachatryan A, et al. Targeted expression of calcitonin gene-related peptide to osteoblasts increases bone density in mice[J]. J Bone Miner Res, 1999, 14(7): 1067-1074.
[9]
Glowka TR, Steinebach A, Stein K, et al. The novel CGRP receptor antagonist BIBN4096BS alleviates a postoperative intestinal inflammation and prevents postoperative ileus[J]. Neurogastroenterol Motil, 2015, 27(7): 1038-1049.
[10]
Nakasa T, Ishikawa M, Takada T, et al. Attenuation of cartilage degeneration by calcitonin gene-related paptide receptor antagonist via inhibition of subchondral bone sclerosis in osteoarthritis mice[J]. J Orthop Res, 2016, 34(7): 1177-1184.
[11]
Lin C, Shao Y, Zeng C, et al. Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post-traumatic osteoarthritis[J]. J Cell Physiol, 2018, 233(8): 6135-6147.
[12]
Zhang Z, Huckle J, Francomano CA, et al. The influence of pulsed low-intensity ultrasound on matrix production of chondrocytes at different stages of differentiation: an explant study[J]. Ultrasound Med Biol, 2002, 28(11/12): 1547-1553.
[13]
Naito K, Watari T, Muta T, et al. Low-intensity pulsed ultrasound (LIPUS) increases the articular cartilage type II collagen in a rat osteoarthritis model[J]. J Orthop Res, 2010, 28(3): 361-369.
[14]
Korstjens CM, Van Der Rijt R, Albers G, et al. Low-intensity pulsed ultrasound affects human articular chondrocytes in vitro[J]. Med Biol Eng Comput, 2008, 46(12): 1263-1270.
[15]
Zhang ZJ, Huckle J, Francomano CA, et al. The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production[J]. Ultrasound Med Biol, 2003, 29(11): 1645-1651.
[16]
Lacourt M, Gao C, Li A, et al. Relationship between cartilage and subchondral bone lesions in repetitive impact trauma-induced equine osteoarthritis[J]. Osteoarthritis Cartilage, 2012, 20(6): 572-583.
[17]
Jaiprakash A, Prasadam I, Feng JQ, et al. Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis[J]. Int J Biol Sci, 2012, 8(3): 406-417.
[18]
Sharma AR, Jagga S, Lee SS, et al. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis[J]. Int J Mol Sci, 2013, 14(10): 19805-19830.
[19]
Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis[J]. Trends Pharmacol Sci, 2014, 35(5): 227-236.
[20]
Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J]. Nat Med, 2013, 19(6): 704-712.
[21]
Yuan XL, Meng HY, Wang YC, et al. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies[J]. Osteoarthritis Cartilage, 2014, 22(8): 1077-1089.
[22]
Li XF, Sun YL, Zhou ZL, et al. Mitigation of articular cartilage degeneration and subchondral bone sclerosis in osteoarthritis progression using low-intensity ultrasound stimulation[J]. Ultrasound Med Biol, 2019, 45(1): 148-159.
[23]
Mei LF, Yun FL, Yi Z, et al. Effect of metformin on inflammatory cytokine and apoptosis induced by lipopolysaccharide in THP-1 cells[J]. Chin J Endocrinol Metab, 2013, 29(9): 801-805.
[24]
Sag D, Carling D, Stout RD, et al. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype[J]. J Immunol, 2008, 181(7): 8633-8641.
[25]
冯晓峰,张荣凯,祁伟仲,等. 二甲双胍干预骨关节炎模型小鼠早期骨关节炎软骨及软骨下骨变化[J]. 中国组织工程研究,2019, 23(19): 3031-3036.
[26]
Okura T, Matsushita M, Mishima K, et al. Activated FGFR3 prevents subchondral bone sclerosis during the development of osteoarthritis in transgenic mice with achondroplasia[J]. J Orthop Res, 2018, 36(1): 300-308.
[27]
Lin C, Liu L, Zeng C, et al. Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12[J/OL]. Bone Res, 2019, 7(5): 1-13. doi: 10.1038/s41413-018-0041-8.
[28]
Yoo YM, Kwag JH, Kim KH, et al. Effects of neuropeptides and mechanical loading on bone cell resorption in vitro[J]. Int J Mol Sci, 2014, 15(4): 5874-5883.
[29]
Persson E, Lerner UH. The neuropeptide VIP regulates the expression of osteoclastogenic factors in osteoblasts[J]. J Cell Biochem, 2011, 112(12): 3732-3741.
[30]
Mukohyama H, Ransjö M, Taniguchi H, et al. The inhibitory effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide on osteoclast formation are associated with upregulation of osteoprotegerin and downregulation of RANKL and RANK[J]. Biochem Biophys Res Commun, 2000, 271(1): 158-163.
[31]
Kanemitsu M, Nakasa T, Shirakawa Y, et al. Role of vasoactive intestinal peptide in the progression of osteoarthritis through bone sclerosis and angiogenesis in subchondral bone[J]. J Orthop Sci, 2020, 25(5): 897-906.
[32]
黄文杰,刘洪江,欧建锋. 软骨下骨骨吸收陷窝对骨关节炎的影响及中药干预研究[J]. 新中医,2010, 42(2): 96-98.
[33]
李钊. 梁祖建,张百挡,等. 补肾通络方调控软骨下骨骨重塑保护关节软骨的机制研究[J]. 新中医,2010, 42(8): 120-123.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[4] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[5] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[6] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[7] 莫波, 王佩, 王恒, 何志军, 梁俊, 郝志楠. 腹腔镜胃癌根治术与改良胃癌根治术治疗早期胃癌的疗效[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 644-647.
[8] 索郎多杰, 高红桥, 巴桑顿珠, 仁桑. 腹腔镜下不同术式治疗肝囊型包虫病的临床疗效分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 670-673.
[9] 唐浩, 梁平, 徐小江, 曾凯, 文拨辉. 三维重建指导下腹腔镜右半肝加尾状叶切除治疗Bismuth Ⅲa型肝门部胆管癌的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 688-692.
[10] 胡建生, 周佐霖, 孙林梅, 马腾辉. 不同诊断分型的慢性放射性直肠损伤临床治疗转归:85例回顾性分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 466-472.
[11] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[12] 丁晨梦, 胡雪慧, 闫沛, 程乔. 髋部骨折术后患者居家康复体验质性研究的Meta整合[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 365-372.
[13] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[14] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
[15] 李莹倩, 李华山. 基于真实世界的完全性直肠脱垂治疗方式评价[J]. 中华临床医师杂志(电子版), 2023, 17(06): 700-705.
阅读次数
全文


摘要