切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 597 -601. doi: 10.3877/cma.j.issn.1674-134X.2020.05.013

所属专题: 文献

综述

水凝胶药物递送系统治疗类风湿关节炎的研究进展
顾疏楠1, 李奇1,()   
  1. 1. 510280 广州,南方医科大学珠江医院关节骨病外科
  • 收稿日期:2020-05-26 出版日期:2020-10-01
  • 通信作者: 李奇

Hydrogel drug delivery systems in treatment of rheumatoid arthritis

Shunan Gu1, Qi Li1,()   

  1. 1. Department of Arthropathy, Zhujiang Hospital Affiliated to Southern Medical University, Guangzhou 510280, China
  • Received:2020-05-26 Published:2020-10-01
  • Corresponding author: Qi Li
  • About author:
    Corresponding author: Li Qi, Email:
引用本文:

顾疏楠, 李奇. 水凝胶药物递送系统治疗类风湿关节炎的研究进展[J/OL]. 中华关节外科杂志(电子版), 2020, 14(05): 597-601.

Shunan Gu, Qi Li. Hydrogel drug delivery systems in treatment of rheumatoid arthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(05): 597-601.

类风湿性关节炎(RA)是一种严重危害患者健康的系统性疾病,随着治疗水平的进步,越来越多的RA治疗药物出现,但如药物副作用、治疗效果等问题依旧存在,这阻碍了RA患者的治疗与康复。目前来说,有越来越多的新型药物递送系统被发现,这类药物递送系统在提高目的药物的靶向性、利用度、缓释性等方面表现优异。其中,水凝胶药物递送系统因其特殊的作用特点与结构,使其相较于其他药物递送系统拥有独特优势,这对于RA的药物治疗有积极推动作用。本文将重点对几种水凝胶载药体系在RA治疗中的研究进展进行阐述。

Rheumatoid arthritis (RA) is a systemic disease which seriously harms the health of patients. An increasing number of drugs appears due to the development of treatment methods. However, disadvantages such as drug side effects and efficacy still exist, which are negative for the treatment and recovery of RA patients. At present, more and more new drug delivery systems have been discovered, which have excellent performance in improving targeting, utilization and sustained release of target drugs. Among them, the hydrogel drug delivery system has unique advantages compared with other drug delivery systems for its characteristics and structure, which has possible ability to improve the current treatment means. This article focused on the research progress of several hydrogel drug delivery systems in RA drug therapy.

表1 RA常规治疗药物特点
[1]
中华医学会风湿病学分会.2018中国类风湿关节炎诊疗指南[J].中华内科杂志,2018,57(4):242-251.
[2]
Sparks JA. Rheumatoid arthritis[J]. Ann Intern Med, 2019, 170(1): ITC1-ITC16.
[3]
Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis[J]. Lancet, 2017, 389(186): 2338-2348.
[4]
Mitragotri S, Yoo JW. Designing micro- and nano-particles for treating rheumatoid arthritis[J]. Arch Pharm Res, 2011, 34(11): 1887-1897.
[5]
Prasad LK, O'mary H, Cui ZR. Nanomedicine delivers promising treatments for rheumatoid arthritis[J]. Nanomedicine (Lond), 2015, 10(13): 2063-2074.
[6]
Raza F, Zafar H, Zhu Y, et al. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers[J/OL]. Pharmaceutics, 2018, 10(1): 16. doi: 10.3390/pharmaceutics10010016.
[7]
Kalpana RK, Kinam P. Biodegradable hydrogels in drug delivery[J]. Adv Drug Deliv Rev, 1993, 11(1/2): 59-84.
[8]
Yu Z, Xu Q, Dong C, et al. Self-Assembling peptide nanofibrous hydrogel as a versatile drug delivery platform[J]. Curr Pharm Des, 2015, 21(29): 4342-4354.
[9]
Wichterle O, Lím D. Hydrophilic Gels for biological use[J]. Nature, 1960, 185(476): 117-118.
[10]
Xu X, Weng Y, Xu L, et al. Sustained release of Avastin? from polysaccharides cross-linked hydrogels for ocular drug delivery[J]. Int J Biol Macromol, 2013, 60: 272-276.
[11]
Wan JM, Liu LL, Zhang JF, et al. Promotion of neuronal regeneration by using self-polymerized dendritic polypeptide scaffold for spinal cord tissue engineering[J/OL]. J Mater Sci Mater Med, 2017, 29(1): 6. doi: 10.1007/s10856-017-6010-8.
[12]
Liu JF, Liu JJ, Chu L, et al. Self-assembling peptide of D-amino acids boosts selectivity and antitumor efficacy of 10-hydroxycamptothecin[J]. ACS Appl Mater Interfaces, 2014, 6(8): 5558-5565.
[13]
Lock LL, Cheetham AG, Zhang P, et al. Design and construction of supramolecular nanobeacons for enzyme detection[J]. ACS Nano, 2013, 7(6): 4924-4932.
[14]
Appel EA, Del Barrio J, Loh XJ, et al. Supramolecular polymeric hydrogels[J]. Chem Soc Rev, 2012, 41(18): 6195-6214.
[15]
Rybtchinski B. Adaptive supramolecular nanomaterials based on strong noncovalent interactions[J]. ACS Nano, 2011, 5(9): 6791-6818.
[16]
Ma Z, Tao C, Sun L, et al. In situ forming injectable hydrogel for encapsulation of nanoiguratimod and sustained release of therapeutics[J]. Int J Nanomedicine, 2019, 14: 8725-8738.
[17]
Yu X, Liu Q, Wu J, et al. Sonication-triggered instantaneous gel-to-gel transformation[J]. Chemistry, 2010, 16(30): 9099-9106.
[18]
Tang C, Smith AM, Collins RF, et al. Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts[J]. Langmuir, 2009, 25(16): 9447-9453.
[19]
Yin N, Guo XE, Sun R, et al. Intra-articular injection of indomethacin-methotrexate in situ hydrogel for the synergistic treatment of rheumatoid arthritis[J]. J Mater Chem B, 2020, 8(5): 993-1007.
[20]
Pan W, Dai CB, Li Y, et al. PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis[J/OL]. Biomaterials, 2020, 239: 119851. doi: 10.1016/j.biomaterials.2020.119851.
[21]
Wu H, Wang KY, Wang HN, et al. Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy[J]. Colloids Surf B Biointerfaces, 2017, 149: 97-104.
[22]
Park J, Pramanick S, Park D, et al. Therapeutic-Gas-Responsive hydrogel[J/OL]. Adv Mater, 2017, 29(44). doi:10.1002/adma.201702859.
[23]
Yeo J, Lee YM, Lee J, et al. Nitric Oxide-Scavenging nanogel for treating rheumatoid arthritis[J]. Nano Lett, 2019, 19(10): 6716-6724.
[24]
Wang C, Javadi A, Ghaffari M, et al. A pH-sensitive molecularly imprinted nanospheres/hydrogel composite as a coating for implantable biosensors[J]. Biomaterials, 2010, 31(18): 4944-4951.
[25]
Liang L, Li J, Li Q, et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells[J]. Angew Chem Int Ed Engl, 2014, 53(30): 7745-7750.
[26]
Du X, Zhou J, Shi JF, et al. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials[J]. Chem Rev, 2015, 115(24): 13165-13307.
[27]
Estroff LA, Hamilton AD. Water gelation by small organic molecules[J]. Chem Rev, 2004, 104(3): 1201-1218.
[28]
Tian Y, Wang H, Liu Y, et al. A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of HIV vaccine[J]. Nano Lett, 2014, 14(3): 1439-1445.
[29]
Li J, Kuang Y, Gao Y, et al. D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID)[J]. J Am Chem Soc, 2013, 135(2): 542-545.
[30]
Chen Z, Xing L, Fan Q, et al. Drug-Bearing supramolecular filament hydrogels as anti-inflammatory agents[J]. Theranostics, 2017, 7(7): 2003-2014.
[31]
Kanazawa T, Tamano K, Sogabe K, et al. Intra-articular retention and anti-arthritic effects in collagen-induced arthritis model mice by injectable small interfering RNA containing hydrogel[J]. Biol Pharm Bull, 2017, 40(11): 1929-1933.
[32]
Liu H, Ding J, Li C, et al. Hydrogel is superior to fibrin gel as matrix of stem cells in alleviating antigen-induced arthritis[J/OL]. Polymers (Basel), 2016, 8(5): 182. doi:10.3390/polym8050182.
[1] 王博冉, 乔春梅, 李春歌, 王欣, 王晓磊. 超声造影评估类风湿关节炎亚临床滑膜炎疾病进展的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 802-808.
[2] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[3] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[4] 蒲彦婷, 吴翠先, 兰玉梅. 类风湿关节炎患者骨质疏松症风险预测列线图模型构建[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 596-603.
[5] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[6] 谢佳乐, 李琦, 芦升升, 姜劲松. 内侧膝骨关节炎伴胫股关节冠状半脱位的手术治疗[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 653-657.
[7] 李志文, 李远志, 李华, 方志远. 糖皮质激素治疗膝骨关节炎疗效的网状Meta分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 484-496.
[8] 闫泽辉, 狄靖凯, 郭子瑊, 穆昶江, 张智博, 陈帅, 王泽华, 田最, 向川. 膝关节机械感受器在半月板损伤中的功能[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 524-531.
[9] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[10] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[11] 陈利, 王锦海, 董浩男, 李利军. 锁骨钩钢板在肩锁关节脱位治疗中的不足及改良[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 377-381.
[12] 宋庆成, 郑占乐, 王天瑞, 王宇钏, 张凯旋, 纳静, 蔚佳昊, 杨思繁, 宋九宏, 张英泽. “人老膝不老”:膝关节健康管理的全方位探索与实践[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 321-324.
[13] 郑占乐, 王宇钏, 蔚佳昊, 宋庆成, 张凯旋, 纳静, 王天瑞, 宋九宏, 张英泽, 王娟. 保膝须“开膝”——“开膝”在膝骨关节炎中的临床应用价值[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 325-330.
[14] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
[15] 马豆豆, 丁艳, 古今, 王丽芳, 石连杰. 以发热为首发表现的强直性脊柱炎合并潜伏性结核感染一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 791-794.
阅读次数
全文


摘要