切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 597 -601. doi: 10.3877/cma.j.issn.1674-134X.2020.05.013

所属专题: 文献

综述

水凝胶药物递送系统治疗类风湿关节炎的研究进展
顾疏楠1, 李奇1,()   
  1. 1. 510280 广州,南方医科大学珠江医院关节骨病外科
  • 收稿日期:2020-05-26 出版日期:2020-10-01
  • 通信作者: 李奇

Hydrogel drug delivery systems in treatment of rheumatoid arthritis

Shunan Gu1, Qi Li1,()   

  1. 1. Department of Arthropathy, Zhujiang Hospital Affiliated to Southern Medical University, Guangzhou 510280, China
  • Received:2020-05-26 Published:2020-10-01
  • Corresponding author: Qi Li
  • About author:
    Corresponding author: Li Qi, Email:
引用本文:

顾疏楠, 李奇. 水凝胶药物递送系统治疗类风湿关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2020, 14(05): 597-601.

Shunan Gu, Qi Li. Hydrogel drug delivery systems in treatment of rheumatoid arthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(05): 597-601.

类风湿性关节炎(RA)是一种严重危害患者健康的系统性疾病,随着治疗水平的进步,越来越多的RA治疗药物出现,但如药物副作用、治疗效果等问题依旧存在,这阻碍了RA患者的治疗与康复。目前来说,有越来越多的新型药物递送系统被发现,这类药物递送系统在提高目的药物的靶向性、利用度、缓释性等方面表现优异。其中,水凝胶药物递送系统因其特殊的作用特点与结构,使其相较于其他药物递送系统拥有独特优势,这对于RA的药物治疗有积极推动作用。本文将重点对几种水凝胶载药体系在RA治疗中的研究进展进行阐述。

Rheumatoid arthritis (RA) is a systemic disease which seriously harms the health of patients. An increasing number of drugs appears due to the development of treatment methods. However, disadvantages such as drug side effects and efficacy still exist, which are negative for the treatment and recovery of RA patients. At present, more and more new drug delivery systems have been discovered, which have excellent performance in improving targeting, utilization and sustained release of target drugs. Among them, the hydrogel drug delivery system has unique advantages compared with other drug delivery systems for its characteristics and structure, which has possible ability to improve the current treatment means. This article focused on the research progress of several hydrogel drug delivery systems in RA drug therapy.

表1 RA常规治疗药物特点
[1]
中华医学会风湿病学分会.2018中国类风湿关节炎诊疗指南[J].中华内科杂志,2018,57(4):242-251.
[2]
Sparks JA. Rheumatoid arthritis[J]. Ann Intern Med, 2019, 170(1): ITC1-ITC16.
[3]
Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis[J]. Lancet, 2017, 389(186): 2338-2348.
[4]
Mitragotri S, Yoo JW. Designing micro- and nano-particles for treating rheumatoid arthritis[J]. Arch Pharm Res, 2011, 34(11): 1887-1897.
[5]
Prasad LK, O'mary H, Cui ZR. Nanomedicine delivers promising treatments for rheumatoid arthritis[J]. Nanomedicine (Lond), 2015, 10(13): 2063-2074.
[6]
Raza F, Zafar H, Zhu Y, et al. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers[J/OL]. Pharmaceutics, 2018, 10(1): 16. doi: 10.3390/pharmaceutics10010016.
[7]
Kalpana RK, Kinam P. Biodegradable hydrogels in drug delivery[J]. Adv Drug Deliv Rev, 1993, 11(1/2): 59-84.
[8]
Yu Z, Xu Q, Dong C, et al. Self-Assembling peptide nanofibrous hydrogel as a versatile drug delivery platform[J]. Curr Pharm Des, 2015, 21(29): 4342-4354.
[9]
Wichterle O, Lím D. Hydrophilic Gels for biological use[J]. Nature, 1960, 185(476): 117-118.
[10]
Xu X, Weng Y, Xu L, et al. Sustained release of Avastin? from polysaccharides cross-linked hydrogels for ocular drug delivery[J]. Int J Biol Macromol, 2013, 60: 272-276.
[11]
Wan JM, Liu LL, Zhang JF, et al. Promotion of neuronal regeneration by using self-polymerized dendritic polypeptide scaffold for spinal cord tissue engineering[J/OL]. J Mater Sci Mater Med, 2017, 29(1): 6. doi: 10.1007/s10856-017-6010-8.
[12]
Liu JF, Liu JJ, Chu L, et al. Self-assembling peptide of D-amino acids boosts selectivity and antitumor efficacy of 10-hydroxycamptothecin[J]. ACS Appl Mater Interfaces, 2014, 6(8): 5558-5565.
[13]
Lock LL, Cheetham AG, Zhang P, et al. Design and construction of supramolecular nanobeacons for enzyme detection[J]. ACS Nano, 2013, 7(6): 4924-4932.
[14]
Appel EA, Del Barrio J, Loh XJ, et al. Supramolecular polymeric hydrogels[J]. Chem Soc Rev, 2012, 41(18): 6195-6214.
[15]
Rybtchinski B. Adaptive supramolecular nanomaterials based on strong noncovalent interactions[J]. ACS Nano, 2011, 5(9): 6791-6818.
[16]
Ma Z, Tao C, Sun L, et al. In situ forming injectable hydrogel for encapsulation of nanoiguratimod and sustained release of therapeutics[J]. Int J Nanomedicine, 2019, 14: 8725-8738.
[17]
Yu X, Liu Q, Wu J, et al. Sonication-triggered instantaneous gel-to-gel transformation[J]. Chemistry, 2010, 16(30): 9099-9106.
[18]
Tang C, Smith AM, Collins RF, et al. Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts[J]. Langmuir, 2009, 25(16): 9447-9453.
[19]
Yin N, Guo XE, Sun R, et al. Intra-articular injection of indomethacin-methotrexate in situ hydrogel for the synergistic treatment of rheumatoid arthritis[J]. J Mater Chem B, 2020, 8(5): 993-1007.
[20]
Pan W, Dai CB, Li Y, et al. PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis[J/OL]. Biomaterials, 2020, 239: 119851. doi: 10.1016/j.biomaterials.2020.119851.
[21]
Wu H, Wang KY, Wang HN, et al. Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy[J]. Colloids Surf B Biointerfaces, 2017, 149: 97-104.
[22]
Park J, Pramanick S, Park D, et al. Therapeutic-Gas-Responsive hydrogel[J/OL]. Adv Mater, 2017, 29(44). doi:10.1002/adma.201702859.
[23]
Yeo J, Lee YM, Lee J, et al. Nitric Oxide-Scavenging nanogel for treating rheumatoid arthritis[J]. Nano Lett, 2019, 19(10): 6716-6724.
[24]
Wang C, Javadi A, Ghaffari M, et al. A pH-sensitive molecularly imprinted nanospheres/hydrogel composite as a coating for implantable biosensors[J]. Biomaterials, 2010, 31(18): 4944-4951.
[25]
Liang L, Li J, Li Q, et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells[J]. Angew Chem Int Ed Engl, 2014, 53(30): 7745-7750.
[26]
Du X, Zhou J, Shi JF, et al. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials[J]. Chem Rev, 2015, 115(24): 13165-13307.
[27]
Estroff LA, Hamilton AD. Water gelation by small organic molecules[J]. Chem Rev, 2004, 104(3): 1201-1218.
[28]
Tian Y, Wang H, Liu Y, et al. A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of HIV vaccine[J]. Nano Lett, 2014, 14(3): 1439-1445.
[29]
Li J, Kuang Y, Gao Y, et al. D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID)[J]. J Am Chem Soc, 2013, 135(2): 542-545.
[30]
Chen Z, Xing L, Fan Q, et al. Drug-Bearing supramolecular filament hydrogels as anti-inflammatory agents[J]. Theranostics, 2017, 7(7): 2003-2014.
[31]
Kanazawa T, Tamano K, Sogabe K, et al. Intra-articular retention and anti-arthritic effects in collagen-induced arthritis model mice by injectable small interfering RNA containing hydrogel[J]. Biol Pharm Bull, 2017, 40(11): 1929-1933.
[32]
Liu H, Ding J, Li C, et al. Hydrogel is superior to fibrin gel as matrix of stem cells in alleviating antigen-induced arthritis[J/OL]. Polymers (Basel), 2016, 8(5): 182. doi:10.3390/polym8050182.
[1] 赵敏, 施依璐, 段莎莎, 王雅皙, 赵捷, 赵海玥, 张璐, 白天昊, 张小杉. RGD微泡介导高频超声造影对类风湿性关节炎滑膜新生血管的定量评估[J]. 中华医学超声杂志(电子版), 2023, 20(05): 530-536.
[2] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[3] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[4] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[5] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[6] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[7] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[8] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[9] 高玲, 于哲, 范然, 臧银善. 外周血细胞计数比值评估类风湿关节炎疗效的价值[J]. 中华关节外科杂志(电子版), 2023, 17(05): 642-647.
[10] 叶长缨, 谢静, 丁桂聪. 乳牙龋病的过渡性治疗研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 365-370.
[11] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[12] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[13] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[14] 张子砚, 曾红, 许苑晶, 郭璐琦, 王金武, 王少白, 任富超, 缪伟强, 戴尅戎, 王茹. 膝关节生物力学标志物预测膝关节炎研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 315-320.
[15] 许瑛杰, 朱佳, 康闽, 侯俊, 苏改秀, 李胜男, 张丹, 赖建铭. 风湿病合并消化道穿孔患儿的临床特点分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 648-654.
阅读次数
全文


摘要