[1] |
中华医学会风湿病学分会.2018中国类风湿关节炎诊疗指南[J].中华内科杂志,2018,57(4):242-251.
|
[2] |
Sparks JA. Rheumatoid arthritis[J]. Ann Intern Med, 2019, 170(1): ITC1-ITC16.
|
[3] |
Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis[J]. Lancet, 2017, 389(186): 2338-2348.
|
[4] |
Mitragotri S, Yoo JW. Designing micro- and nano-particles for treating rheumatoid arthritis[J]. Arch Pharm Res, 2011, 34(11): 1887-1897.
|
[5] |
Prasad LK, O'mary H, Cui ZR. Nanomedicine delivers promising treatments for rheumatoid arthritis[J]. Nanomedicine (Lond), 2015, 10(13): 2063-2074.
|
[6] |
Raza F, Zafar H, Zhu Y, et al. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers[J/OL]. Pharmaceutics, 2018, 10(1): 16. doi: 10.3390/pharmaceutics10010016.
|
[7] |
Kalpana RK, Kinam P. Biodegradable hydrogels in drug delivery[J]. Adv Drug Deliv Rev, 1993, 11(1/2): 59-84.
|
[8] |
Yu Z, Xu Q, Dong C, et al. Self-Assembling peptide nanofibrous hydrogel as a versatile drug delivery platform[J]. Curr Pharm Des, 2015, 21(29): 4342-4354.
|
[9] |
Wichterle O, Lím D. Hydrophilic Gels for biological use[J]. Nature, 1960, 185(476): 117-118.
|
[10] |
Xu X, Weng Y, Xu L, et al. Sustained release of Avastin? from polysaccharides cross-linked hydrogels for ocular drug delivery[J]. Int J Biol Macromol, 2013, 60: 272-276.
|
[11] |
Wan JM, Liu LL, Zhang JF, et al. Promotion of neuronal regeneration by using self-polymerized dendritic polypeptide scaffold for spinal cord tissue engineering[J/OL]. J Mater Sci Mater Med, 2017, 29(1): 6. doi: 10.1007/s10856-017-6010-8.
|
[12] |
Liu JF, Liu JJ, Chu L, et al. Self-assembling peptide of D-amino acids boosts selectivity and antitumor efficacy of 10-hydroxycamptothecin[J]. ACS Appl Mater Interfaces, 2014, 6(8): 5558-5565.
|
[13] |
Lock LL, Cheetham AG, Zhang P, et al. Design and construction of supramolecular nanobeacons for enzyme detection[J]. ACS Nano, 2013, 7(6): 4924-4932.
|
[14] |
Appel EA, Del Barrio J, Loh XJ, et al. Supramolecular polymeric hydrogels[J]. Chem Soc Rev, 2012, 41(18): 6195-6214.
|
[15] |
Rybtchinski B. Adaptive supramolecular nanomaterials based on strong noncovalent interactions[J]. ACS Nano, 2011, 5(9): 6791-6818.
|
[16] |
Ma Z, Tao C, Sun L, et al. In situ forming injectable hydrogel for encapsulation of nanoiguratimod and sustained release of therapeutics[J]. Int J Nanomedicine, 2019, 14: 8725-8738.
|
[17] |
Yu X, Liu Q, Wu J, et al. Sonication-triggered instantaneous gel-to-gel transformation[J]. Chemistry, 2010, 16(30): 9099-9106.
|
[18] |
Tang C, Smith AM, Collins RF, et al. Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts[J]. Langmuir, 2009, 25(16): 9447-9453.
|
[19] |
Yin N, Guo XE, Sun R, et al. Intra-articular injection of indomethacin-methotrexate in situ hydrogel for the synergistic treatment of rheumatoid arthritis[J]. J Mater Chem B, 2020, 8(5): 993-1007.
|
[20] |
Pan W, Dai CB, Li Y, et al. PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis[J/OL]. Biomaterials, 2020, 239: 119851. doi: 10.1016/j.biomaterials.2020.119851.
|
[21] |
Wu H, Wang KY, Wang HN, et al. Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy[J]. Colloids Surf B Biointerfaces, 2017, 149: 97-104.
|
[22] |
Park J, Pramanick S, Park D, et al. Therapeutic-Gas-Responsive hydrogel[J/OL]. Adv Mater, 2017, 29(44). doi: 10.1002/adma.201702859.
|
[23] |
Yeo J, Lee YM, Lee J, et al. Nitric Oxide-Scavenging nanogel for treating rheumatoid arthritis[J]. Nano Lett, 2019, 19(10): 6716-6724.
|
[24] |
Wang C, Javadi A, Ghaffari M, et al. A pH-sensitive molecularly imprinted nanospheres/hydrogel composite as a coating for implantable biosensors[J]. Biomaterials, 2010, 31(18): 4944-4951.
|
[25] |
Liang L, Li J, Li Q, et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells[J]. Angew Chem Int Ed Engl, 2014, 53(30): 7745-7750.
|
[26] |
Du X, Zhou J, Shi JF, et al. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials[J]. Chem Rev, 2015, 115(24): 13165-13307.
|
[27] |
Estroff LA, Hamilton AD. Water gelation by small organic molecules[J]. Chem Rev, 2004, 104(3): 1201-1218.
|
[28] |
Tian Y, Wang H, Liu Y, et al. A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of HIV vaccine[J]. Nano Lett, 2014, 14(3): 1439-1445.
|
[29] |
Li J, Kuang Y, Gao Y, et al. D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID)[J]. J Am Chem Soc, 2013, 135(2): 542-545.
|
[30] |
Chen Z, Xing L, Fan Q, et al. Drug-Bearing supramolecular filament hydrogels as anti-inflammatory agents[J]. Theranostics, 2017, 7(7): 2003-2014.
|
[31] |
Kanazawa T, Tamano K, Sogabe K, et al. Intra-articular retention and anti-arthritic effects in collagen-induced arthritis model mice by injectable small interfering RNA containing hydrogel[J]. Biol Pharm Bull, 2017, 40(11): 1929-1933.
|
[32] |
Liu H, Ding J, Li C, et al. Hydrogel is superior to fibrin gel as matrix of stem cells in alleviating antigen-induced arthritis[J/OL]. Polymers (Basel), 2016, 8(5): 182. doi: 10.3390/polym8050182.
|