切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 602 -607. doi: 10.3877/cma.j.issn.1674-134X.2020.05.014

所属专题: 文献

综述

软骨下骨硬化在骨关节炎发病机制中的作用研究
杨明义1, 马尧1, 许珂2, 蔡永松2, 郝博1, 许鹏2,()   
  1. 1. 710054 西安交通大学附属红会医院;716000 延安大学
    2. 710054 西安交通大学附属红会医院
  • 收稿日期:2020-05-28 出版日期:2020-10-01
  • 通信作者: 许鹏
  • 基金资助:
    国家自然科学基金(81772410,81601877); 中国博士后科学基金(2020M673454)

Role of subchondral bone sclerosis in pathogenesis of osteoarthritis

Mingyi Yang1, Yao Ma1, Ke Xu2, Yongsong Cai2, Bo Hao1, Peng Xu2,()   

  1. 1. Department of orthopedics, honghui hospital, xi 'an jiaotong university, Xi'an 710054, China; Yan' an university, Yan' an 716000, China
    2. Department of orthopedics, honghui hospital, xi 'an jiaotong university, Xi'an 710054, China
  • Received:2020-05-28 Published:2020-10-01
  • Corresponding author: Peng Xu
  • About author:
    Corresponding author: Xu Peng, Email:
引用本文:

杨明义, 马尧, 许珂, 蔡永松, 郝博, 许鹏. 软骨下骨硬化在骨关节炎发病机制中的作用研究[J]. 中华关节外科杂志(电子版), 2020, 14(05): 602-607.

Mingyi Yang, Yao Ma, Ke Xu, Yongsong Cai, Bo Hao, Peng Xu. Role of subchondral bone sclerosis in pathogenesis of osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(05): 602-607.

骨关节炎(OA)又称为退行性关节炎,是最常见的关节疾病,其病变主要包括软骨退变、软骨下骨的改变和滑膜的炎症。目前OA的发病机理尚不明确,既往许多研究都聚焦于关节软骨的退变,而近年研究报道软骨下骨硬化可能是OA的一个病因,发生在关节软骨退变之前。研究软骨下骨硬化在OA进展中的作用可以更全面地了解OA的发病机制,并为OA的治疗提供新视角。本文针对近年来关于软骨下骨硬化在OA发病过程中的作用研究进行综述,为后续基础研究及临床工作提供帮助。

Osteoarthritis (OA) is also called degenerative joint inflammation is the most common joint disease, and its lesions mainly include cartilage degeneration, subchondral bone changes and inflammation of the synovium. At present, the pathogenesis of OA is not clear. Many previous studies have focused on the degeneration of articular cartilage, and recent studies have reported that subchondral bone sclerosis may be a cause of OA, which occurs before the degeneration of articular cartilage. Studying the role of subchondral osteosclerosis in the progression of OA can provide a more comprehensive understanding of the pathogenesis of OA and provide a new perspective for the treatment of OA. This article reviewed recent studies on the role of subchondral bone sclerosis in the pathogenesis of OA to provide help for follow-up basic research and clinical work.

[18]
Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis[J]. Arthritis Res Ther, 2009, 11(3): 227-235.
[19]
Zhu J, Zhu Y, Xiao WF, et al. Instability and excessive mechanical loading mediate subchondral bone changes to induce osteoarthritis[J]. Ann Transl Med, 2020, 8(6): 350-360.
[20]
Lajeunesse D. The role of bone in the treatment of osteoarthritis[J]. Osteoarthritis Cartilage, 2004, 12(1):34-38.
[21]
Hilal G, Massicotte F, Martel-Pelletier J, et al. Endogenous prostaglandin E2 and insulin-like growth factor 1 can modulate the levels of parathyroid hormone receptor in human osteoarthritic osteoblasts[J]. J Bone Miner Res, 2001, 16(4): 713-721.
[22]
Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis[J]. Trends Pharmacol Sci, 2014, 35(5): 227-236.
[23]
Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis[J]. Ann N Y Acad Sci, 2010, 1192(1): 230-237.
[24]
肖承滢,林乔龄,李民.骨性关节炎软骨下骨病变机制研究进展[J].医学信息:上旬刊,2010,23(6):2263-2265.
[25]
Mckinley TO, Bay BK. Trabecular bone strain changes associated with subchondral stiffening of the proximal tibia[J]. J Biomech, 2003, 36(2): 155-163.
[26]
Jin Z, Yanyan X, Lizhi Z, et al. Changes of microstructure in cartilage and subchondral bone of patients with knee osteoarthrits[J]. Chin J Exp Surg, 2019, 36(7): 1313-1315.
[27]
Donell S. Subchondral bone remodelling in osteoarthritis[J]. EFORT Open Rev, 2019, 4(6): 221-229.
[28]
Hunter DJ, Gerstenfeld L, Bishop G, et al. Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized [J]. Arthritis Res Ther, 2009, 11(1): 11-18.
[29]
Jaiprakash A, Prasadam I, Feng JQ, et al. Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis[J]. Int J Biol Sci, 2012, 8(3): 406-417.
[30]
Sanchez C, Deberg MA, Piccardi N, et al. Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, -1beta and oncostatin M pre-treated non-sclerotic osteoblasts[J]. Osteoarthritis Cartilage, 2005, 13(11): 979-987.
[31]
Sanchez C, Deberg MA, Piccardi N, et al. Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes[J]. Osteoarthritis Cartilage, 2005, 13(11): 988-997.
[32]
Vela-Anero á,Hermida-Gómez T, Gato-Calvo L, et al. Long-term effects of Hydrogen sulfide on the anabolic-catabolic balance of articular cartilage in vitro[J]. Nitric Oxide, 2017, 70(1): 42-50.
[33]
Baugé C, Girard N, Leclercq S, et al. Regulatory mechanism of transforming growth factor beta receptor type II degradation by interleukin-1 in primary chondrocytes[J]. Biochim Biophys Acta, 2012, 1823(5): 983-986.
[34]
Sanchez C, Deberg MA, Bellahcnee AA, et al. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone[J]. Arthritis Rheum, 2008, 58(2): 442-455.
[35]
Sanchez C, Gabay O, Salvat C, et al. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts[J]. Osteoarthritis Cartilage, 2009, 17(4): 473-481.
[36]
Geurts J, Patel A, Hirschmann MT, et al. Elevated marrow inflammatory cells and osteoclasts in subchondral osteosclerosis in human knee osteoarthritis[J]. J Orthop Res, 2016, 34(2): 262-269.
[37]
Sun G, Wang YC, Ti YF, et al. Regulatory B cell is critical in bone union process through suppressing proinflammatory cytokines and stimulating Foxp3 in Treg cells[J]. Clin Exp Pharmacol Physiol, 2017, 44(4): 455-462.
[38]
Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis: a biologic Link with articular cartilage leading to abnormal remodeling[J]. Curr Opin Rheumatol, 2003, 15(5): 628-633.
[39]
Hayami T, Pickarski M, Zhuo Y, et al. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis[J]. Bone, 2006, 38(2): 234-243.
[40]
Muehleman C, Green J, Williams JM, et al. The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage[J]. Osteoarthritis Cartilage, 2002, 10(3): 226-233.
[41]
Tu M, Yang M, Yu NX, et al. Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis[J]. Bone Res, 2019, 7(1): 29-39.
[42]
李云泽,赵序利.骨性关节炎发病机制研究进展[J].中国疼痛医学杂志,2016,22(10):728-733.
[43]
连强强,迟博婧,张柳,等.Wnt信号通路对软骨和软骨下骨双靶向调控及其在骨关节炎进展中的作用[J]. 中国修复重建外科杂志,2020,34(6): 797-803.
[44]
Chan BY, Fuller ES, Russell AK, et al. Increased chondrocyte sclerostin May protect against cartilage degradation in osteoarthritis[J]. Osteoarthritis Cartilage, 2011, 19(7): 874-885.
[45]
Maeda Y, Nakamura E, Nguyen MT, et al. Indian hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone[J]. Proc Natl Acad Sci USA, 2007, 104(15): 6382-6387.
[46]
张荣凯,李国威,张大卫,等.机械应力改变致印度豪猪蛋白在早期骨关节炎软骨下骨的表达[J].中华医学杂志,2017,97(1):53-56.
[47]
Lauzon M, Drevelle O, Daviau A, et al. Effects of BMP-9 and BMP-2 on the PI3K/Akt pathway in MC3T3-E1 preosteoblasts[J]. Tissue Eng Part A, 2016, 22(17/18): 1075-1085.
[48]
Xi JC, Zang HY, Guo LX, et al. The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis[J]. J Recept Signal Transduct Res, 2015, 35(6): 640-645.
[49]
Lin C, Shao Y, Zeng C, et al. Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post-traumatic osteoarthritis[J]. J Cell Physiol, 2018, 233(8): 6135-6147.
[1]
Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis[J]. Clin Sports Med, 2005, 24(1): 1-12.
[2]
Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation[J]. Instr Course Lect, 1998, 47(1): 487-504.
[3]
Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage[J]. Clin Orthop Relat Res, 1986, 21(3): 34-40.
[4]
Muraoka T, Hagino H, Okano T, et al. Role of subchondral bone in osteoarthritis development: a comparative study of two strains of Guinea pigs with and without spontaneously occurring osteoarthritis[J]. Arthritis Rheum, 2007, 56(10): 3366-3374.
[5]
Libicher M, Ivancic M, Hoffmann M, et al. Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging[J]. Eur Radiol, 2005, 15(2): 390-394.
[6]
Carlson CS, Loeser RF, Jayo MJ, et al. Osteoarthritis in cynomolgus macaques: a Primate model of naturally occurring disease[J]. J Orthop Res, 1994, 12(3): 331-339.
[7]
Anderson-Mackenzie JM, Quasnichka HL, Starr RL, et al. Fundamental subchondral bone changes in spontaneous knee osteoarthritis[J]. Int J Biochem Cell Biol, 2005, 37(1): 224-236.
[8]
Newberry WN, Zukosky DK, Haut RC. Subfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage[J]. J Orthop Res, 1997, 15(3): 450-455.
[9]
Benske J, Schünke M, Tillmann B. Subchondral bone formation in arthrosis. Polychrome labeling studies in mice[J]. Acta Orthop Scand, 1988, 59(5): 536-541.
[10]
Wu DD, Burr DB, Boyd RD, et al. Bone and cartilage changes following experimental varus or valgus tibial angulation[J]. J Orthop Res, 1990, 8(4): 572-585.
[11]
Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis[J]. Osteoarthritis Cartilage, 2004, 12(Suppl A): S20-S30.
[12]
Burr DB, Gallant MA. Bone remodelling in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(11): 665-673.
[13]
Jin Z, Lizhi Z, Zhenyu Y. Research progress on microarchitectural changes of cartilage and subchondrM bone in osteoarthritis[J]. Chin J Exp Surg, 2017, 34(2): 355-358.
[14]
单鹏程,曹永平. 软骨下骨在骨关节炎发病机制中的作用[J]. 中国矫形外科杂志,2009, 17(23): 1972-1975.
[15]
Goldring SR. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis[J]. Ther Adv Musculoskelet Dis, 2012, 4(4): 249-258.
[16]
Campbell TM, Churchman SM, Gomez A, et al. Mesenchymal stem cell alterations in bone marrow lesions in patients with hip osteoarthritis[J]. Arthritis Rheumatol, 2016, 68(7): 1648-1659.
[17]
Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J]. Nat Med, 2013, 19(6): 704-712.
[50]
Orth P, Cucchiarini M, Wagenpfeil S, et al. PTH [1-34]-induced alterations of the subchondral bone provoke early osteoarthritis[J]. Osteoarthritis Cartilage, 2014, 22(6): 813-821.
[51]
Morita Y, Ito H, Ishikawa M, et al. Subchondral bone fragility with meniscal tear accelerates and parathyroid hormone decelerates articular cartilage degeneration in rat osteoarthritis model[J]. J Orthop Res, 2018, 36(7): 1959-1968.
[52]
Upton AR, Holding CA, Dharmapatni AA, et al. The expression of RANKL and OPG in the various grades of osteoarthritic cartilage[J]. Rheumatol Int, 2012, 32(2): 535-540.
[53]
Chen LX, Lin L, Wang HJ, et al. Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-kappaBp65-specific siRNA[J]. Osteoarthritis Cartilage, 2008, 16(2): 174-184.
[54]
Abed E, Bouvard B, Martineau X, et al. Elevated hepatocyte growth factor levels in osteoarthritis osteoblasts contribute to their altered response to bone morphogenetic protein-2 and reduced mineralization capacity[J]. Bone, 2015, 75(1): 111-119.
[55]
Qin HJ, Xu T, Wu HT, et al. SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis[J]. Bone, 2019, 125(1): 140-150.
[56]
Dequeker J,Mokassa L, Aerssens J. Bone density and osteoarthritis[J]. J Rheumatol, 1995, 22(Suppl 43):98-100.
[57]
Pastoureau PC, Chomel AC, Bonnet J. Evidence of early subchondral bone changes in the meniscectomized Guinea pig. A densitometric study using dual-energy X-ray absorptiometry subregional analysis[J]. Osteoarthritis Cartilage, 1999, 7(5): 466-473.
[1] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[2] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[3] 伊喆, 王志新, 陈伟, 齐伟亚, 方杰, 石海飞, 赵夏, 赵喆, 竺枫, 盛伟, 陈焱, 张宇昊, 朱瑾, 殷耀斌, 杨勇, 陈山林, 刘波. 机器人辅助无移位急性舟骨骨折经皮内固定的诊疗与手术操作规范[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 464-468.
[4] 陈山林, 魏绮珮, 刘畅. 腕关节假体:路在何方?[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 469-475.
[5] 郝丽文, 王增涛, 荣凯, 侯致典, 陈超, 仇申强, 刘林峰, 张迪, 王云鹏, 钟硕. 趾增宽术在缺损手指全形再造中的应用效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 476-479.
[6] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[7] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[8] 易晨, 张亚东, 董茜, 唐海阔, 刘志国. 应用骨盖技术拔除下颌低位骨性埋伏阻生第三磨牙的疗效观察[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 424-429.
[9] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[10] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[11] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
[12] 田明达, 吴珺, 王会娟, 张欣, 沙玉英, 陈琳, 赵宾洋. 6297名0~3岁婴幼儿超声骨密度检测结果分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 644-647.
[13] 许瑛杰, 朱佳, 康闽, 侯俊, 苏改秀, 李胜男, 张丹, 赖建铭. 风湿病合并消化道穿孔患儿的临床特点分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 648-654.
[14] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
[15] 周加军, 余永武, 周涵, 刘勇, 张凌. 甲状旁腺切除对继发性甲状旁腺功能亢进患者骨密度及骨代谢的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 706-710.
阅读次数
全文


摘要