切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 602 -607. doi: 10.3877/cma.j.issn.1674-134X.2020.05.014

所属专题: 文献

综述

软骨下骨硬化在骨关节炎发病机制中的作用研究
杨明义1, 马尧1, 许珂2, 蔡永松2, 郝博1, 许鹏2,()   
  1. 1. 710054 西安交通大学附属红会医院;716000 延安大学
    2. 710054 西安交通大学附属红会医院
  • 收稿日期:2020-05-28 出版日期:2020-10-01
  • 通信作者: 许鹏
  • 基金资助:
    国家自然科学基金(81772410,81601877); 中国博士后科学基金(2020M673454)

Role of subchondral bone sclerosis in pathogenesis of osteoarthritis

Mingyi Yang1, Yao Ma1, Ke Xu2, Yongsong Cai2, Bo Hao1, Peng Xu2,()   

  1. 1. Department of orthopedics, honghui hospital, xi 'an jiaotong university, Xi'an 710054, China; Yan' an university, Yan' an 716000, China
    2. Department of orthopedics, honghui hospital, xi 'an jiaotong university, Xi'an 710054, China
  • Received:2020-05-28 Published:2020-10-01
  • Corresponding author: Peng Xu
  • About author:
    Corresponding author: Xu Peng, Email:
引用本文:

杨明义, 马尧, 许珂, 蔡永松, 郝博, 许鹏. 软骨下骨硬化在骨关节炎发病机制中的作用研究[J/OL]. 中华关节外科杂志(电子版), 2020, 14(05): 602-607.

Mingyi Yang, Yao Ma, Ke Xu, Yongsong Cai, Bo Hao, Peng Xu. Role of subchondral bone sclerosis in pathogenesis of osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(05): 602-607.

骨关节炎(OA)又称为退行性关节炎,是最常见的关节疾病,其病变主要包括软骨退变、软骨下骨的改变和滑膜的炎症。目前OA的发病机理尚不明确,既往许多研究都聚焦于关节软骨的退变,而近年研究报道软骨下骨硬化可能是OA的一个病因,发生在关节软骨退变之前。研究软骨下骨硬化在OA进展中的作用可以更全面地了解OA的发病机制,并为OA的治疗提供新视角。本文针对近年来关于软骨下骨硬化在OA发病过程中的作用研究进行综述,为后续基础研究及临床工作提供帮助。

Osteoarthritis (OA) is also called degenerative joint inflammation is the most common joint disease, and its lesions mainly include cartilage degeneration, subchondral bone changes and inflammation of the synovium. At present, the pathogenesis of OA is not clear. Many previous studies have focused on the degeneration of articular cartilage, and recent studies have reported that subchondral bone sclerosis may be a cause of OA, which occurs before the degeneration of articular cartilage. Studying the role of subchondral osteosclerosis in the progression of OA can provide a more comprehensive understanding of the pathogenesis of OA and provide a new perspective for the treatment of OA. This article reviewed recent studies on the role of subchondral bone sclerosis in the pathogenesis of OA to provide help for follow-up basic research and clinical work.

[18]
Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis[J]. Arthritis Res Ther, 2009, 11(3): 227-235.
[19]
Zhu J, Zhu Y, Xiao WF, et al. Instability and excessive mechanical loading mediate subchondral bone changes to induce osteoarthritis[J]. Ann Transl Med, 2020, 8(6): 350-360.
[20]
Lajeunesse D. The role of bone in the treatment of osteoarthritis[J]. Osteoarthritis Cartilage, 2004, 12(1):34-38.
[21]
Hilal G, Massicotte F, Martel-Pelletier J, et al. Endogenous prostaglandin E2 and insulin-like growth factor 1 can modulate the levels of parathyroid hormone receptor in human osteoarthritic osteoblasts[J]. J Bone Miner Res, 2001, 16(4): 713-721.
[22]
Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis[J]. Trends Pharmacol Sci, 2014, 35(5): 227-236.
[23]
Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis[J]. Ann N Y Acad Sci, 2010, 1192(1): 230-237.
[24]
肖承滢,林乔龄,李民.骨性关节炎软骨下骨病变机制研究进展[J].医学信息:上旬刊,2010,23(6):2263-2265.
[25]
Mckinley TO, Bay BK. Trabecular bone strain changes associated with subchondral stiffening of the proximal tibia[J]. J Biomech, 2003, 36(2): 155-163.
[26]
Jin Z, Yanyan X, Lizhi Z, et al. Changes of microstructure in cartilage and subchondral bone of patients with knee osteoarthrits[J]. Chin J Exp Surg, 2019, 36(7): 1313-1315.
[27]
Donell S. Subchondral bone remodelling in osteoarthritis[J]. EFORT Open Rev, 2019, 4(6): 221-229.
[28]
Hunter DJ, Gerstenfeld L, Bishop G, et al. Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized [J]. Arthritis Res Ther, 2009, 11(1): 11-18.
[29]
Jaiprakash A, Prasadam I, Feng JQ, et al. Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis[J]. Int J Biol Sci, 2012, 8(3): 406-417.
[30]
Sanchez C, Deberg MA, Piccardi N, et al. Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, -1beta and oncostatin M pre-treated non-sclerotic osteoblasts[J]. Osteoarthritis Cartilage, 2005, 13(11): 979-987.
[31]
Sanchez C, Deberg MA, Piccardi N, et al. Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes[J]. Osteoarthritis Cartilage, 2005, 13(11): 988-997.
[32]
Vela-Anero á,Hermida-Gómez T, Gato-Calvo L, et al. Long-term effects of Hydrogen sulfide on the anabolic-catabolic balance of articular cartilage in vitro[J]. Nitric Oxide, 2017, 70(1): 42-50.
[33]
Baugé C, Girard N, Leclercq S, et al. Regulatory mechanism of transforming growth factor beta receptor type II degradation by interleukin-1 in primary chondrocytes[J]. Biochim Biophys Acta, 2012, 1823(5): 983-986.
[34]
Sanchez C, Deberg MA, Bellahcnee AA, et al. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone[J]. Arthritis Rheum, 2008, 58(2): 442-455.
[35]
Sanchez C, Gabay O, Salvat C, et al. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts[J]. Osteoarthritis Cartilage, 2009, 17(4): 473-481.
[36]
Geurts J, Patel A, Hirschmann MT, et al. Elevated marrow inflammatory cells and osteoclasts in subchondral osteosclerosis in human knee osteoarthritis[J]. J Orthop Res, 2016, 34(2): 262-269.
[37]
Sun G, Wang YC, Ti YF, et al. Regulatory B cell is critical in bone union process through suppressing proinflammatory cytokines and stimulating Foxp3 in Treg cells[J]. Clin Exp Pharmacol Physiol, 2017, 44(4): 455-462.
[38]
Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis: a biologic Link with articular cartilage leading to abnormal remodeling[J]. Curr Opin Rheumatol, 2003, 15(5): 628-633.
[39]
Hayami T, Pickarski M, Zhuo Y, et al. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis[J]. Bone, 2006, 38(2): 234-243.
[40]
Muehleman C, Green J, Williams JM, et al. The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage[J]. Osteoarthritis Cartilage, 2002, 10(3): 226-233.
[41]
Tu M, Yang M, Yu NX, et al. Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis[J]. Bone Res, 2019, 7(1): 29-39.
[42]
李云泽,赵序利.骨性关节炎发病机制研究进展[J].中国疼痛医学杂志,2016,22(10):728-733.
[43]
连强强,迟博婧,张柳,等.Wnt信号通路对软骨和软骨下骨双靶向调控及其在骨关节炎进展中的作用[J]. 中国修复重建外科杂志,2020,34(6): 797-803.
[44]
Chan BY, Fuller ES, Russell AK, et al. Increased chondrocyte sclerostin May protect against cartilage degradation in osteoarthritis[J]. Osteoarthritis Cartilage, 2011, 19(7): 874-885.
[45]
Maeda Y, Nakamura E, Nguyen MT, et al. Indian hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone[J]. Proc Natl Acad Sci USA, 2007, 104(15): 6382-6387.
[46]
张荣凯,李国威,张大卫,等.机械应力改变致印度豪猪蛋白在早期骨关节炎软骨下骨的表达[J].中华医学杂志,2017,97(1):53-56.
[47]
Lauzon M, Drevelle O, Daviau A, et al. Effects of BMP-9 and BMP-2 on the PI3K/Akt pathway in MC3T3-E1 preosteoblasts[J]. Tissue Eng Part A, 2016, 22(17/18): 1075-1085.
[48]
Xi JC, Zang HY, Guo LX, et al. The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis[J]. J Recept Signal Transduct Res, 2015, 35(6): 640-645.
[49]
Lin C, Shao Y, Zeng C, et al. Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post-traumatic osteoarthritis[J]. J Cell Physiol, 2018, 233(8): 6135-6147.
[1]
Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis[J]. Clin Sports Med, 2005, 24(1): 1-12.
[2]
Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation[J]. Instr Course Lect, 1998, 47(1): 487-504.
[3]
Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage[J]. Clin Orthop Relat Res, 1986, 21(3): 34-40.
[4]
Muraoka T, Hagino H, Okano T, et al. Role of subchondral bone in osteoarthritis development: a comparative study of two strains of Guinea pigs with and without spontaneously occurring osteoarthritis[J]. Arthritis Rheum, 2007, 56(10): 3366-3374.
[5]
Libicher M, Ivancic M, Hoffmann M, et al. Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging[J]. Eur Radiol, 2005, 15(2): 390-394.
[6]
Carlson CS, Loeser RF, Jayo MJ, et al. Osteoarthritis in cynomolgus macaques: a Primate model of naturally occurring disease[J]. J Orthop Res, 1994, 12(3): 331-339.
[7]
Anderson-Mackenzie JM, Quasnichka HL, Starr RL, et al. Fundamental subchondral bone changes in spontaneous knee osteoarthritis[J]. Int J Biochem Cell Biol, 2005, 37(1): 224-236.
[8]
Newberry WN, Zukosky DK, Haut RC. Subfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage[J]. J Orthop Res, 1997, 15(3): 450-455.
[9]
Benske J, Schünke M, Tillmann B. Subchondral bone formation in arthrosis. Polychrome labeling studies in mice[J]. Acta Orthop Scand, 1988, 59(5): 536-541.
[10]
Wu DD, Burr DB, Boyd RD, et al. Bone and cartilage changes following experimental varus or valgus tibial angulation[J]. J Orthop Res, 1990, 8(4): 572-585.
[11]
Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis[J]. Osteoarthritis Cartilage, 2004, 12(Suppl A): S20-S30.
[12]
Burr DB, Gallant MA. Bone remodelling in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(11): 665-673.
[13]
Jin Z, Lizhi Z, Zhenyu Y. Research progress on microarchitectural changes of cartilage and subchondrM bone in osteoarthritis[J]. Chin J Exp Surg, 2017, 34(2): 355-358.
[14]
单鹏程,曹永平. 软骨下骨在骨关节炎发病机制中的作用[J]. 中国矫形外科杂志,2009, 17(23): 1972-1975.
[15]
Goldring SR. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis[J]. Ther Adv Musculoskelet Dis, 2012, 4(4): 249-258.
[16]
Campbell TM, Churchman SM, Gomez A, et al. Mesenchymal stem cell alterations in bone marrow lesions in patients with hip osteoarthritis[J]. Arthritis Rheumatol, 2016, 68(7): 1648-1659.
[17]
Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J]. Nat Med, 2013, 19(6): 704-712.
[50]
Orth P, Cucchiarini M, Wagenpfeil S, et al. PTH [1-34]-induced alterations of the subchondral bone provoke early osteoarthritis[J]. Osteoarthritis Cartilage, 2014, 22(6): 813-821.
[51]
Morita Y, Ito H, Ishikawa M, et al. Subchondral bone fragility with meniscal tear accelerates and parathyroid hormone decelerates articular cartilage degeneration in rat osteoarthritis model[J]. J Orthop Res, 2018, 36(7): 1959-1968.
[52]
Upton AR, Holding CA, Dharmapatni AA, et al. The expression of RANKL and OPG in the various grades of osteoarthritic cartilage[J]. Rheumatol Int, 2012, 32(2): 535-540.
[53]
Chen LX, Lin L, Wang HJ, et al. Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-kappaBp65-specific siRNA[J]. Osteoarthritis Cartilage, 2008, 16(2): 174-184.
[54]
Abed E, Bouvard B, Martineau X, et al. Elevated hepatocyte growth factor levels in osteoarthritis osteoblasts contribute to their altered response to bone morphogenetic protein-2 and reduced mineralization capacity[J]. Bone, 2015, 75(1): 111-119.
[55]
Qin HJ, Xu T, Wu HT, et al. SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis[J]. Bone, 2019, 125(1): 140-150.
[56]
Dequeker J,Mokassa L, Aerssens J. Bone density and osteoarthritis[J]. J Rheumatol, 1995, 22(Suppl 43):98-100.
[57]
Pastoureau PC, Chomel AC, Bonnet J. Evidence of early subchondral bone changes in the meniscectomized Guinea pig. A densitometric study using dual-energy X-ray absorptiometry subregional analysis[J]. Osteoarthritis Cartilage, 1999, 7(5): 466-473.
[1] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[2] 王博冉, 乔春梅, 李春歌, 王欣, 王晓磊. 超声造影评估类风湿关节炎亚临床滑膜炎疾病进展的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 802-808.
[3] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[4] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[5] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[6] 麻紫月, 王贞文, 张强, 赵代伟, 张翊伦. 右侧喉不返神经1例报告[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 115-116.
[7] 宋庆成, 郑占乐, 王天瑞, 王宇钏, 张凯旋, 纳静, 蔚佳昊, 杨思繁, 宋九宏, 张英泽. “人老膝不老”:膝关节健康管理的全方位探索与实践[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 321-324.
[8] 郑占乐, 王宇钏, 蔚佳昊, 宋庆成, 张凯旋, 纳静, 王天瑞, 宋九宏, 张英泽, 王娟. 保膝须“开膝”——“开膝”在膝骨关节炎中的临床应用价值[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 325-330.
[9] 王松雷, 张贻良, 孟浩, 宋威, 白林晨, 袁心, 张辉. 股骨前髁预截骨髓外定位技术在全膝关节置换术中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 811-819.
[10] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
[11] 喻蓉, 周伟力, 雷青, 陈松, 陈立, 刘峰, 丁州, 阳宏奇, 王康, 王大鹏. 改良的内外侧环抱锁定钢板在复杂胫骨平台骨折治疗中的临床疗效观察[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 764-770.
[12] 张耕毓, 唐冲, 张昆, 张辉, 张清华, 刘家帮. 股骨头坏死髓芯减压术的文献计量学分析及单中心病例报道[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 771-780.
[13] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[14] 马豆豆, 丁艳, 古今, 王丽芳, 石连杰. 以发热为首发表现的强直性脊柱炎合并潜伏性结核感染一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 791-794.
[15] 刘芳明, 石秀秀, 唐冲, 张克石, 徐影, 王桂杉, 关振鹏, 李晓. 骨科康复患者对数字疗法应用的知晓度和需求度:一项基于928 份问卷调查结果分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 654-661.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?