[18] |
Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis[J]. Arthritis Res Ther, 2009, 11(3): 227-235.
|
[19] |
Zhu J, Zhu Y, Xiao WF, et al. Instability and excessive mechanical loading mediate subchondral bone changes to induce osteoarthritis[J]. Ann Transl Med, 2020, 8(6): 350-360.
|
[20] |
Lajeunesse D. The role of bone in the treatment of osteoarthritis[J]. Osteoarthritis Cartilage, 2004, 12(1):34-38.
|
[21] |
Hilal G, Massicotte F, Martel-Pelletier J, et al. Endogenous prostaglandin E2 and insulin-like growth factor 1 can modulate the levels of parathyroid hormone receptor in human osteoarthritic osteoblasts[J]. J Bone Miner Res, 2001, 16(4): 713-721.
|
[22] |
Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis[J]. Trends Pharmacol Sci, 2014, 35(5): 227-236.
|
[23] |
Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis[J]. Ann N Y Acad Sci, 2010, 1192(1): 230-237.
|
[24] |
肖承滢,林乔龄,李民.骨性关节炎软骨下骨病变机制研究进展[J].医学信息:上旬刊,2010,23(6):2263-2265.
|
[25] |
Mckinley TO, Bay BK. Trabecular bone strain changes associated with subchondral stiffening of the proximal tibia[J]. J Biomech, 2003, 36(2): 155-163.
|
[26] |
Jin Z, Yanyan X, Lizhi Z, et al. Changes of microstructure in cartilage and subchondral bone of patients with knee osteoarthrits[J]. Chin J Exp Surg, 2019, 36(7): 1313-1315.
|
[27] |
Donell S. Subchondral bone remodelling in osteoarthritis[J]. EFORT Open Rev, 2019, 4(6): 221-229.
|
[28] |
Hunter DJ, Gerstenfeld L, Bishop G, et al. Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized [J]. Arthritis Res Ther, 2009, 11(1): 11-18.
|
[29] |
Jaiprakash A, Prasadam I, Feng JQ, et al. Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis[J]. Int J Biol Sci, 2012, 8(3): 406-417.
|
[30] |
Sanchez C, Deberg MA, Piccardi N, et al. Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, -1beta and oncostatin M pre-treated non-sclerotic osteoblasts[J]. Osteoarthritis Cartilage, 2005, 13(11): 979-987.
|
[31] |
Sanchez C, Deberg MA, Piccardi N, et al. Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes[J]. Osteoarthritis Cartilage, 2005, 13(11): 988-997.
|
[32] |
Vela-Anero á,Hermida-Gómez T, Gato-Calvo L, et al. Long-term effects of Hydrogen sulfide on the anabolic-catabolic balance of articular cartilage in vitro[J]. Nitric Oxide, 2017, 70(1): 42-50.
|
[33] |
Baugé C, Girard N, Leclercq S, et al. Regulatory mechanism of transforming growth factor beta receptor type II degradation by interleukin-1 in primary chondrocytes[J]. Biochim Biophys Acta, 2012, 1823(5): 983-986.
|
[34] |
Sanchez C, Deberg MA, Bellahcnee AA, et al. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone[J]. Arthritis Rheum, 2008, 58(2): 442-455.
|
[35] |
Sanchez C, Gabay O, Salvat C, et al. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts[J]. Osteoarthritis Cartilage, 2009, 17(4): 473-481.
|
[36] |
Geurts J, Patel A, Hirschmann MT, et al. Elevated marrow inflammatory cells and osteoclasts in subchondral osteosclerosis in human knee osteoarthritis[J]. J Orthop Res, 2016, 34(2): 262-269.
|
[37] |
Sun G, Wang YC, Ti YF, et al. Regulatory B cell is critical in bone union process through suppressing proinflammatory cytokines and stimulating Foxp3 in Treg cells[J]. Clin Exp Pharmacol Physiol, 2017, 44(4): 455-462.
|
[38] |
Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis: a biologic Link with articular cartilage leading to abnormal remodeling[J]. Curr Opin Rheumatol, 2003, 15(5): 628-633.
|
[39] |
Hayami T, Pickarski M, Zhuo Y, et al. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis[J]. Bone, 2006, 38(2): 234-243.
|
[40] |
Muehleman C, Green J, Williams JM, et al. The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage[J]. Osteoarthritis Cartilage, 2002, 10(3): 226-233.
|
[41] |
Tu M, Yang M, Yu NX, et al. Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis[J]. Bone Res, 2019, 7(1): 29-39.
|
[42] |
李云泽,赵序利.骨性关节炎发病机制研究进展[J].中国疼痛医学杂志,2016,22(10):728-733.
|
[43] |
连强强,迟博婧,张柳,等.Wnt信号通路对软骨和软骨下骨双靶向调控及其在骨关节炎进展中的作用[J]. 中国修复重建外科杂志,2020,34(6): 797-803.
|
[44] |
Chan BY, Fuller ES, Russell AK, et al. Increased chondrocyte sclerostin May protect against cartilage degradation in osteoarthritis[J]. Osteoarthritis Cartilage, 2011, 19(7): 874-885.
|
[45] |
Maeda Y, Nakamura E, Nguyen MT, et al. Indian hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone[J]. Proc Natl Acad Sci USA, 2007, 104(15): 6382-6387.
|
[46] |
张荣凯,李国威,张大卫,等.机械应力改变致印度豪猪蛋白在早期骨关节炎软骨下骨的表达[J].中华医学杂志,2017,97(1):53-56.
|
[47] |
Lauzon M, Drevelle O, Daviau A, et al. Effects of BMP-9 and BMP-2 on the PI3K/Akt pathway in MC3T3-E1 preosteoblasts[J]. Tissue Eng Part A, 2016, 22(17/18): 1075-1085.
|
[48] |
Xi JC, Zang HY, Guo LX, et al. The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis[J]. J Recept Signal Transduct Res, 2015, 35(6): 640-645.
|
[49] |
Lin C, Shao Y, Zeng C, et al. Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post-traumatic osteoarthritis[J]. J Cell Physiol, 2018, 233(8): 6135-6147.
|
[1] |
Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis[J]. Clin Sports Med, 2005, 24(1): 1-12.
|
[2] |
Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation[J]. Instr Course Lect, 1998, 47(1): 487-504.
|
[3] |
Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage[J]. Clin Orthop Relat Res, 1986, 21(3): 34-40.
|
[4] |
Muraoka T, Hagino H, Okano T, et al. Role of subchondral bone in osteoarthritis development: a comparative study of two strains of Guinea pigs with and without spontaneously occurring osteoarthritis[J]. Arthritis Rheum, 2007, 56(10): 3366-3374.
|
[5] |
Libicher M, Ivancic M, Hoffmann M, et al. Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging[J]. Eur Radiol, 2005, 15(2): 390-394.
|
[6] |
Carlson CS, Loeser RF, Jayo MJ, et al. Osteoarthritis in cynomolgus macaques: a Primate model of naturally occurring disease[J]. J Orthop Res, 1994, 12(3): 331-339.
|
[7] |
Anderson-Mackenzie JM, Quasnichka HL, Starr RL, et al. Fundamental subchondral bone changes in spontaneous knee osteoarthritis[J]. Int J Biochem Cell Biol, 2005, 37(1): 224-236.
|
[8] |
Newberry WN, Zukosky DK, Haut RC. Subfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage[J]. J Orthop Res, 1997, 15(3): 450-455.
|
[9] |
Benske J, Schünke M, Tillmann B. Subchondral bone formation in arthrosis. Polychrome labeling studies in mice[J]. Acta Orthop Scand, 1988, 59(5): 536-541.
|
[10] |
Wu DD, Burr DB, Boyd RD, et al. Bone and cartilage changes following experimental varus or valgus tibial angulation[J]. J Orthop Res, 1990, 8(4): 572-585.
|
[11] |
Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis[J]. Osteoarthritis Cartilage, 2004, 12(Suppl A): S20-S30.
|
[12] |
Burr DB, Gallant MA. Bone remodelling in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(11): 665-673.
|
[13] |
Jin Z, Lizhi Z, Zhenyu Y. Research progress on microarchitectural changes of cartilage and subchondrM bone in osteoarthritis[J]. Chin J Exp Surg, 2017, 34(2): 355-358.
|
[14] |
单鹏程,曹永平. 软骨下骨在骨关节炎发病机制中的作用[J]. 中国矫形外科杂志,2009, 17(23): 1972-1975.
|
[15] |
Goldring SR. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis[J]. Ther Adv Musculoskelet Dis, 2012, 4(4): 249-258.
|
[16] |
Campbell TM, Churchman SM, Gomez A, et al. Mesenchymal stem cell alterations in bone marrow lesions in patients with hip osteoarthritis[J]. Arthritis Rheumatol, 2016, 68(7): 1648-1659.
|
[17] |
Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J]. Nat Med, 2013, 19(6): 704-712.
|
[50] |
Orth P, Cucchiarini M, Wagenpfeil S, et al. PTH [1-34]-induced alterations of the subchondral bone provoke early osteoarthritis[J]. Osteoarthritis Cartilage, 2014, 22(6): 813-821.
|
[51] |
Morita Y, Ito H, Ishikawa M, et al. Subchondral bone fragility with meniscal tear accelerates and parathyroid hormone decelerates articular cartilage degeneration in rat osteoarthritis model[J]. J Orthop Res, 2018, 36(7): 1959-1968.
|
[52] |
Upton AR, Holding CA, Dharmapatni AA, et al. The expression of RANKL and OPG in the various grades of osteoarthritic cartilage[J]. Rheumatol Int, 2012, 32(2): 535-540.
|
[53] |
Chen LX, Lin L, Wang HJ, et al. Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-kappaBp65-specific siRNA[J]. Osteoarthritis Cartilage, 2008, 16(2): 174-184.
|
[54] |
Abed E, Bouvard B, Martineau X, et al. Elevated hepatocyte growth factor levels in osteoarthritis osteoblasts contribute to their altered response to bone morphogenetic protein-2 and reduced mineralization capacity[J]. Bone, 2015, 75(1): 111-119.
|
[55] |
Qin HJ, Xu T, Wu HT, et al. SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis[J]. Bone, 2019, 125(1): 140-150.
|
[56] |
Dequeker J,Mokassa L, Aerssens J. Bone density and osteoarthritis[J]. J Rheumatol, 1995, 22(Suppl 43):98-100.
|
[57] |
Pastoureau PC, Chomel AC, Bonnet J. Evidence of early subchondral bone changes in the meniscectomized Guinea pig. A densitometric study using dual-energy X-ray absorptiometry subregional analysis[J]. Osteoarthritis Cartilage, 1999, 7(5): 466-473.
|