切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 714 -719. doi: 10.3877/cma.j.issn.1674-134X.2025.06.010

综述

自噬在假体周围骨溶解中的作用机制及研究进展
李嘉欢1,2, 张圣洁1,2, 马成虎1, 王江平1,2, 刘振豪1,2, 宋奇锋1,2, 李生贵1, 周胜虎1,()   
  1. 1730050 兰州,解放军联勤保障部队第九四〇医院关节外科
    2730030 兰州,甘肃中医药大学第一临床医学院
  • 收稿日期:2025-01-27 出版日期:2025-12-01
  • 通信作者: 周胜虎
  • 基金资助:
    甘肃省重点研发计划(25YFFA065); 转化医学国家科学中心(上海)上海大学分中心(SUITM-202406); 甘肃省卫生健康委员会(GSWSKY2024-20)

Mechanism of autophagy in periprosthetic osteolysis and research progress

Jiahuan Li1,2, Shengjie Zhang1,2, Chenghu Ma1, Jiangping Wang1,2, Zhenhao Liu1,2, Qifeng Song1,2, Shenggui Li1, Shenghu Zhou1,()   

  1. 1Department of Joint Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, China
    2The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730030, China
  • Received:2025-01-27 Published:2025-12-01
  • Corresponding author: Shenghu Zhou
引用本文:

李嘉欢, 张圣洁, 马成虎, 王江平, 刘振豪, 宋奇锋, 李生贵, 周胜虎. 自噬在假体周围骨溶解中的作用机制及研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(06): 714-719.

Jiahuan Li, Shengjie Zhang, Chenghu Ma, Jiangping Wang, Zhenhao Liu, Qifeng Song, Shenggui Li, Shenghu Zhou. Mechanism of autophagy in periprosthetic osteolysis and research progress[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(06): 714-719.

人工关节置换术是治疗终末期骨关节疾病的有效手段,但假体周围骨溶解作为其主要并发症,严重影响假体使用寿命和患者预后。自噬在假体周围骨溶解的发生发展中发挥着重要作用。本文综述了假体周围骨溶解与自噬的相关理论,详细阐述自噬在其中的作用机制,包括磨损颗粒诱导自噬的发生、自噬对磨损颗粒的清除,同时介绍最新研究成果与突破,并指出目前研究的局限性及未来展望,旨在为揭示假体周围骨溶解的发病机制和寻找有效治疗靶点提供参考。

Artificial joint replacement is an effective treatment for end-stage osteoarthritic diseases, but periprostheticosteolysis, as its major complication, seriously affects the service life of the prosthesis and the prognosis of patients. Autophagy plays an important role in the development of periprosthetic osteolysis. This paper reviewed the theories of periprosthetic osteolysis and autophagy, elaborated the role of autophagy in the development of periprosthetic osteolysis, including the induction of autophagy by wear and tear particles, the removal of wear and tear particles by autophagy, and introduced the latest research results and breakthroughs, pointing out the limitations of the current study and the future outlook, with the aim of providing references for unraveling the pathogenesis of periprosthetic osteolysis and searching for the effective therapeutic targets.

图1 磨损颗粒诱导自噬的过程
Figure 1 The process of wear particle-induced autophagy
图2 自噬对磨损颗粒的清除机制
Figure 2 The clearance mechanism of wear particles by autophagy
[1]
李嘉欢, 乔永杰, 曾健康, 等. 磨损颗粒诱导人工关节置换术后假体无菌性松动相关生物学机制的研究进展[J]. 中华骨与关节外科杂志, 2024, 17(8): 755-761.
[2]
Liu S, Yao S, Yang H, et al. Autophagy: regulator of cell death[J/OL]. Cell Death Dis, 2023, 14(10): 648. DOI: 10.1038/s41419-023-06154-8.
[3]
Wang H, Li X, Zhang Q, et al. Autophagy in disease onset and progression[J]. Aging Dis, 2024, 15(4): 1646-1671.
[4]
Savin L, Pinteala T, Mihai DN, et al. Updates on biomaterials used in total hip arthroplasty (THA)[J/OL]. Polymers, 2023, 15(15): 3278. DOI: 10.3390/polym15153278.
[5]
Hodges NA, Sussman EM, Stegemann JP. Aseptic and septic prosthetic joint loosening: Impact of biomaterial wear on immune cell function, inflammation, and infection[J/OL]. Biomaterials, 2021, 278: 121127. DOI: 10.1016/j.biomaterials.2021.121127.
[6]
Marmotti A, Messina D, Cykowska A, et al. Periprostheticosteolysis: a narrative review[J]. J Biol Regul Homeost Agents, 2020, 34(4 Suppl. 3): 405-417.
[7]
Li W, He P, Huang Y, et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021, 11(1): 222-256.
[8]
Cao W, Li J, Yang K, et al. An overview of autophagy: mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108(3): 304-322.
[9]
Chen X, Tsvetkov AS, Shen HM, et al. International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis[J]. Autophagy, 2024, 20(6): 1213-1246.
[10]
严嘉琦, 张云, 刘方舒, 等. 磷酸三钙磨损颗粒诱导小鼠假体周围骨细胞损伤的作用[J]. 中国应用生理学杂志, 2018, 34(1): 83-87.
[11]
Sellin M-L, Hansmann D, Bader R, et al. Influence of metallic particles and TNF on the transcriptional regulation of NLRP3 inflammasome-associated genes in human osteoblasts[J/OL]. Front Immunol, 2024, 15: 1397432. DOI: 10.3389/fimmu.2024.1397432.
[12]
Prerna K, Dubey VK. Beclin1-mediated interplay between autophagy and apoptosis: New understanding[J]. Int J Biol Macromol, 2022, 204: 258-273.
[13]
Yang S, Li F, Lu S, et al. Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-κB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo[J/OL]. J Ethnopharmacol, 2022, 283: 114739. DOI: 10.1016/j.jep.2021.114739.
[14]
Mei L, Liao K, Chen H, et al. Application of nanomaterials and related drug delivery systems in autophagy[J/OL]. Molecules, 2024, 29(15): 3513. DOI: 10.3390/molecules29153513.
[15]
Yin Z, Gong G, Wang X, et al. The dual role of autophagy in periprostheticosteolysis[J/OL]. Front Cell Dev Biol, 2023, 11: 1123753. DOI: 10.3389/fcell.2023.1123753.
[16]
Zhang Z, Fu X, Xu L, et al. Nanosized alumina particle and proteasome inhibitor bortezomib prevented inflammation and osteolysis induced by titanium particle via autophagy and NF-κB signaling[J/OL]. Sci Rep, 2020, 10: 5562. DOI: 10.1038/s41598-020-62254-x.
[17]
Chang P, Li H, Hu H, et al. The role of HDAC6 in autophagy and NLRP3 inflammasome[J/OL]. Front Immunol, 2021, 12: 763831. DOI: 10.3389/fimmu.2021.763831.
[18]
谭飞, 乔永杰, 张浩强, 等. 磨损颗粒影响破骨细胞经典信号通路研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(1): 106-117.
[19]
Luo T, Jia X, Feng WD, et al. Bergapten inhibits NLRP3 inflammasome activation and pyroptosisvia promoting mitophagy[J]. Acta Pharmacol Sin, 2023, 44(9): 1867-1878.
[20]
Zhang B, Luo C, Xiao W. Induction of osteoclast formation by LOX mutant (LOXG473A) through regulation of autophagy[J/OL]. Ann Transl Med, 2021, 9(18): 1474. DOI: 10.21037/atm-21-4474.
[21]
Song R, He S, Cao Y, et al. Cadmium accelerates autophagy of osteocytes by inhibiting the PI3K/AKT/mTOR signaling pathway[J]. Environ Toxicol, 2023, 38(8): 1980-1988.
[22]
Yi L, Zhong T, Huang Y, et al. Triiodothyronine promotes the osteoblast formation by activating autophagy[J/OL]. Biophys Chem, 2020, 267: 106483. DOI: 10.1016/j.bpc.2020.106483.
[23]
Zhao B, Peng Q, Poon EHL, et al. Leonurine promotes the osteoblast differentiation of rat BMSCs by activation of autophagy via the PI3K/Akt/mTOR pathway[J/OL]. Front Bioeng Biotechnol, 2021, 9: 615191. DOI: 10.3389/fbioe.2021.615191.
[24]
Ren C, Xu Y, Liu H, et al. Effects of runt-related transcription factor 2 (RUNX2) on the autophagy of rapamycin-treated osteoblasts[J]. Bioengineered, 2022, 13(3): 5262-5276.
[25]
Lin X, Wang H, Zou L, et al. The NRF2 activator RTA-408 ameliorates chronic alcohol exposure-induced cognitive impairment and NLRP3 inflammasome activation by modulating impaired mitophagyinitiation[J]. Free Radic Biol Med, 2024, 220: 15-27.
[26]
Lu J, Meng Z, Chen Y, et al. Apigenin induced autophagy and stimulated autophagic lipid degradation[J]. Food Funct, 2020, 11(10): 9208-9215.
[27]
Ali D, Okla M, Abuelreich S, et al. Apigenin and Rutaecarpine reduce the burden of cellular senescence in bone marrow stromal stem cells[J/OL]. Front Endocrinol, 2024, 15: 1360054. DOI: 10.3389/fendo.2024.1360054.
[28]
Mroczek J, Pikula S, Suski S, et al. Apigenin modulates AnxA6- and TNAP-mediated osteoblast mineralization[J/OL]. Int J Mol Sci, 2022, 23(21): 13179. DOI: 10.3390/ijms232113179.
[29]
Ramesh P, Jagadeesan R, Sekaran S, et al. Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling[J/OL]. Front Endocrinol, 2021, 12: 779638. DOI: 10.3389/fendo.2021.779638.
[30]
Levine B, Kroemer G. Biological functions of autophagy genes: a diseaseperspective[J]. Cell, 2019, 176(1-2): 11-42.
[31]
Weng YM, Ke CR, Kong JZ, et al. The significant role of ATG5 in the maintenance of normal functions of Mc3T3-E1 osteoblast[J]. Eur Rev Med Pharmacol Sci, 2018, 22(5): 1224-1232.
[32]
Zhou C, Cui Y, Yang Y, et al. Runx1 protects against the pathological progression of osteoarthritis[J/OL]. Bone Res, 2021, 9(1): 50. DOI: 10.1038/s41413-021-00173-x.
[33]
Li S, Lu X, Chai Q, et al. Engineered niobium carbide MXenzyme-integrated self-adaptive coatings inhibiting periprosthetic osteolysis by orchestrating osteogenesis-osteoclastogenesis balance[J]. ACS Appl Mater Interfaces, 2024, 16(23): 29805-29822.
[34]
Wang Z, Deng Z, Gan J, et al. TiAl(6)V(4) particles promote osteoclast formation via autophagy-mediated downregulation of interferon-beta in osteocytes[J]. Acta Biomater, 2017, 48: 489-498.
[35]
顾赢楚, 顾叶, 吴泽睿, 等. 假体周围骨溶解中成骨细胞自噬的信号通路[J]. 中国组织工程研究, 2023, 27(34): 5561-5569.
[36]
Lyu Z, Meng X, Hu F, et al. Nanoscale ZnO doping in prosthetic polymers mitigate wear particle-induced inflammation and osteolysis through inhibiting macrophage secretory autophagy[J/OL]. Mater Today Bio, 2024, 28: 101225. DOI: 10.1016/j.mtbio.2024.101225.
[37]
Wang S, Deng Z, Ma Y, et al. The role of autophagy and mitophagy in bone metabolic disorders[J]. Int J Biol Sci, 2020, 16(14): 2675-2691.
[38]
姜昱林, 蓝奉军, 田智勇, 等. 3D打印技术在骨关节炎中的研究进展[J]. 中国医学创新, 2024, 21(28): 170-174.
[39]
Du Z, Yu X, Nie B, et al. Effects of magnesium coating on bone-implant interfaces with and without polyether-ether-ketone particle interference: a rabbit model based on porous Ti6Al4V implants[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(7): 2388-2396.
[40]
Haghpanah Z, Mondal D, Momenbeitollahi N, et al. In vitro evaluation of bone cell response to novel 3D-printable nanocomposite biomaterials for bone reconstruction[J]. J Biomed Mater Res A, 2024, 112(10): 1725-1739.
[41]
Zhang Q, Zhang XF. Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3-E1 cells by regulating TNF-like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway[J]. Mol Med Rep, 2019, 19(1): 41-50.
[42]
Farmani AR, Ali Salmeh M, Golkar Z, et al. Li-doped bioactive ceramics: promising biomaterials for tissue engineering and regenerative medicine[J/OL]. J Funct Biomater, 2022, 13(4): 162. DOI: 10.3390/jfb13040162.
[43]
Reichert A, Seidenstuecker M, Gadow R, et al. Carbon-fibre-reinforced SiC composite (C/SiSiC) as an alternative material for endoprosthesis: fabrication, mechanical and in-vitro biological properties[J/OL]. Materials, 2018, 11(2): 316. DOI: 10.3390/ma11020316.
[44]
Liu W, Dai N, Wang Y, et al. Role of autophagy in cadmium-induced apoptosis of primary rat osteoblasts[J/OL]. Sci Rep, 2016, 6: 20404. DOI: 10.1038/srep20404.
[45]
Zhang R, Lin J, Chen F, et al. Worldwide trends of research on periprosthetic osteolysis: a bibliometric study based on VOS viewer[J]. Indian J Orthop, 2021, 55(5): 1326-1334.
[1] 王峰, 曲更宝, 王文彦, 代艳亭. 罗汉果醇对人乳腺癌细胞自噬和凋亡的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 27-32.
[2] 曾健康, 谭飞, 李嘉欢, 李培杰, 刘鹏, 王静, 乔永杰, 宋晓阳, 周胜虎. 青蒿琥酯缓解假体磨损颗粒诱导骨溶解的作用研究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 549-559.
[3] 林志强, 李嘉欢, 张凯, 李文帅, 刘健, 邓泽群, 乔永杰, 周胜虎. 骨髓间充质干细胞在激素性股骨头坏死发病机制的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 464-471.
[4] 茹垚钦, 杨周睿, 毛腾飞, 张钦, 潘文明. 吸入性氢气通过自噬改善大鼠脊髓损伤后运动功能及神经组织修复的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(05): 362-371.
[5] 马小杰, 张贵慧, 李润泽, 王秋入, 陈带领, 马清伟, 张磊, 陈长军. 对硒代甲硫氨酸逆转糖皮质激素介导的成骨细胞凋亡和成骨阻抑治疗大鼠激素性股骨头坏死的机制探索[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 412-420.
[6] 王杰艳, 胡博文, 梁辉. 细胞死亡在肾缺血再灌注损伤中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 653-657.
[7] 程玉红, 杨雪, 李春飞, 代文静. 线粒体自噬调控特发性肺纤维化发生发展的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 833-836.
[8] 吕园园, 高辰旸, 徐永君. 纳米金棒对A549 细胞的毒性效应及其对自噬的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 20-29.
[9] 王辉, 崔恬玉, 段凡. 哺乳动物雷帕霉素靶蛋白信号通路在IgA肾病发病机制中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 209-213.
[10] 何婧, 张海涛, 邵琦妍, 吴彬阁. 硫柳汞对结膜上皮细胞自噬调控及水杨酸钠对其保护机制的实验研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(06): 346-350.
[11] 艾孜买提江·吐尔逊, 玉苏甫·马合木提, 姜世豪, 卡合尔曼·卡德尔, 买买提力·艾沙, 苏日青, 成晓江. LAMP1对脑缺血再灌注大鼠小胶质细胞损伤和自噬的影响[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(04): 230-237.
[12] 阿布都热合曼·阿卜拉, 玉苏甫·马合木提, 苏日青, 卡合尔曼·卡德尔, 买买提力·艾沙, 成晓江. TSPO对脑缺血再灌注损伤及自噬的影响[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 144-153.
[13] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[14] 谢培森, 张绍龙, 张克石, 关振鹏. Circ_0136474增强软骨细胞自噬抑制骨关节炎软骨缺损[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 374-381.
[15] 欧范妍, 郭乾, 曾莉雄, 陈秋莉, 甘厚玉, 杨洁. 基于机器学习和转录组学综合分析线粒体自噬和铁死亡关键基因在成人脓毒症诱导ARDS中的免疫调控作用机制[J/OL]. 中华卫生应急电子杂志, 2025, 11(02): 86-101.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?