| [1] |
李嘉欢, 乔永杰, 曾健康, 等. 磨损颗粒诱导人工关节置换术后假体无菌性松动相关生物学机制的研究进展[J]. 中华骨与关节外科杂志, 2024, 17(8): 755-761.
|
| [2] |
Liu S, Yao S, Yang H, et al. Autophagy: regulator of cell death[J/OL]. Cell Death Dis, 2023, 14(10): 648. DOI: 10.1038/s41419-023-06154-8.
|
| [3] |
Wang H, Li X, Zhang Q, et al. Autophagy in disease onset and progression[J]. Aging Dis, 2024, 15(4): 1646-1671.
|
| [4] |
Savin L, Pinteala T, Mihai DN, et al. Updates on biomaterials used in total hip arthroplasty (THA)[J/OL]. Polymers, 2023, 15(15): 3278. DOI: 10.3390/polym15153278.
|
| [5] |
Hodges NA, Sussman EM, Stegemann JP. Aseptic and septic prosthetic joint loosening: Impact of biomaterial wear on immune cell function, inflammation, and infection[J/OL]. Biomaterials, 2021, 278: 121127. DOI: 10.1016/j.biomaterials.2021.121127.
|
| [6] |
Marmotti A, Messina D, Cykowska A, et al. Periprostheticosteolysis: a narrative review[J]. J Biol Regul Homeost Agents, 2020, 34(4 Suppl. 3): 405-417.
|
| [7] |
Li W, He P, Huang Y, et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021, 11(1): 222-256.
|
| [8] |
Cao W, Li J, Yang K, et al. An overview of autophagy: mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108(3): 304-322.
|
| [9] |
Chen X, Tsvetkov AS, Shen HM, et al. International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis[J]. Autophagy, 2024, 20(6): 1213-1246.
|
| [10] |
严嘉琦, 张云, 刘方舒, 等. 磷酸三钙磨损颗粒诱导小鼠假体周围骨细胞损伤的作用[J]. 中国应用生理学杂志, 2018, 34(1): 83-87.
|
| [11] |
Sellin M-L, Hansmann D, Bader R, et al. Influence of metallic particles and TNF on the transcriptional regulation of NLRP3 inflammasome-associated genes in human osteoblasts[J/OL]. Front Immunol, 2024, 15: 1397432. DOI: 10.3389/fimmu.2024.1397432.
|
| [12] |
Prerna K, Dubey VK. Beclin1-mediated interplay between autophagy and apoptosis: New understanding[J]. Int J Biol Macromol, 2022, 204: 258-273.
|
| [13] |
Yang S, Li F, Lu S, et al. Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-κB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo[J/OL]. J Ethnopharmacol, 2022, 283: 114739. DOI: 10.1016/j.jep.2021.114739.
|
| [14] |
Mei L, Liao K, Chen H, et al. Application of nanomaterials and related drug delivery systems in autophagy[J/OL]. Molecules, 2024, 29(15): 3513. DOI: 10.3390/molecules29153513.
|
| [15] |
Yin Z, Gong G, Wang X, et al. The dual role of autophagy in periprostheticosteolysis[J/OL]. Front Cell Dev Biol, 2023, 11: 1123753. DOI: 10.3389/fcell.2023.1123753.
|
| [16] |
Zhang Z, Fu X, Xu L, et al. Nanosized alumina particle and proteasome inhibitor bortezomib prevented inflammation and osteolysis induced by titanium particle via autophagy and NF-κB signaling[J/OL]. Sci Rep, 2020, 10: 5562. DOI: 10.1038/s41598-020-62254-x.
|
| [17] |
Chang P, Li H, Hu H, et al. The role of HDAC6 in autophagy and NLRP3 inflammasome[J/OL]. Front Immunol, 2021, 12: 763831. DOI: 10.3389/fimmu.2021.763831.
|
| [18] |
谭飞, 乔永杰, 张浩强, 等. 磨损颗粒影响破骨细胞经典信号通路研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(1): 106-117.
|
| [19] |
Luo T, Jia X, Feng WD, et al. Bergapten inhibits NLRP3 inflammasome activation and pyroptosisvia promoting mitophagy[J]. Acta Pharmacol Sin, 2023, 44(9): 1867-1878.
|
| [20] |
Zhang B, Luo C, Xiao W. Induction of osteoclast formation by LOX mutant (LOXG473A) through regulation of autophagy[J/OL]. Ann Transl Med, 2021, 9(18): 1474. DOI: 10.21037/atm-21-4474.
|
| [21] |
Song R, He S, Cao Y, et al. Cadmium accelerates autophagy of osteocytes by inhibiting the PI3K/AKT/mTOR signaling pathway[J]. Environ Toxicol, 2023, 38(8): 1980-1988.
|
| [22] |
Yi L, Zhong T, Huang Y, et al. Triiodothyronine promotes the osteoblast formation by activating autophagy[J/OL]. Biophys Chem, 2020, 267: 106483. DOI: 10.1016/j.bpc.2020.106483.
|
| [23] |
Zhao B, Peng Q, Poon EHL, et al. Leonurine promotes the osteoblast differentiation of rat BMSCs by activation of autophagy via the PI3K/Akt/mTOR pathway[J/OL]. Front Bioeng Biotechnol, 2021, 9: 615191. DOI: 10.3389/fbioe.2021.615191.
|
| [24] |
Ren C, Xu Y, Liu H, et al. Effects of runt-related transcription factor 2 (RUNX2) on the autophagy of rapamycin-treated osteoblasts[J]. Bioengineered, 2022, 13(3): 5262-5276.
|
| [25] |
Lin X, Wang H, Zou L, et al. The NRF2 activator RTA-408 ameliorates chronic alcohol exposure-induced cognitive impairment and NLRP3 inflammasome activation by modulating impaired mitophagyinitiation[J]. Free Radic Biol Med, 2024, 220: 15-27.
|
| [26] |
Lu J, Meng Z, Chen Y, et al. Apigenin induced autophagy and stimulated autophagic lipid degradation[J]. Food Funct, 2020, 11(10): 9208-9215.
|
| [27] |
Ali D, Okla M, Abuelreich S, et al. Apigenin and Rutaecarpine reduce the burden of cellular senescence in bone marrow stromal stem cells[J/OL]. Front Endocrinol, 2024, 15: 1360054. DOI: 10.3389/fendo.2024.1360054.
|
| [28] |
Mroczek J, Pikula S, Suski S, et al. Apigenin modulates AnxA6- and TNAP-mediated osteoblast mineralization[J/OL]. Int J Mol Sci, 2022, 23(21): 13179. DOI: 10.3390/ijms232113179.
|
| [29] |
Ramesh P, Jagadeesan R, Sekaran S, et al. Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling[J/OL]. Front Endocrinol, 2021, 12: 779638. DOI: 10.3389/fendo.2021.779638.
|
| [30] |
Levine B, Kroemer G. Biological functions of autophagy genes: a diseaseperspective[J]. Cell, 2019, 176(1-2): 11-42.
|
| [31] |
Weng YM, Ke CR, Kong JZ, et al. The significant role of ATG5 in the maintenance of normal functions of Mc3T3-E1 osteoblast[J]. Eur Rev Med Pharmacol Sci, 2018, 22(5): 1224-1232.
|
| [32] |
Zhou C, Cui Y, Yang Y, et al. Runx1 protects against the pathological progression of osteoarthritis[J/OL]. Bone Res, 2021, 9(1): 50. DOI: 10.1038/s41413-021-00173-x.
|
| [33] |
Li S, Lu X, Chai Q, et al. Engineered niobium carbide MXenzyme-integrated self-adaptive coatings inhibiting periprosthetic osteolysis by orchestrating osteogenesis-osteoclastogenesis balance[J]. ACS Appl Mater Interfaces, 2024, 16(23): 29805-29822.
|
| [34] |
Wang Z, Deng Z, Gan J, et al. TiAl(6)V(4) particles promote osteoclast formation via autophagy-mediated downregulation of interferon-beta in osteocytes[J]. Acta Biomater, 2017, 48: 489-498.
|
| [35] |
顾赢楚, 顾叶, 吴泽睿, 等. 假体周围骨溶解中成骨细胞自噬的信号通路[J]. 中国组织工程研究, 2023, 27(34): 5561-5569.
|
| [36] |
Lyu Z, Meng X, Hu F, et al. Nanoscale ZnO doping in prosthetic polymers mitigate wear particle-induced inflammation and osteolysis through inhibiting macrophage secretory autophagy[J/OL]. Mater Today Bio, 2024, 28: 101225. DOI: 10.1016/j.mtbio.2024.101225.
|
| [37] |
Wang S, Deng Z, Ma Y, et al. The role of autophagy and mitophagy in bone metabolic disorders[J]. Int J Biol Sci, 2020, 16(14): 2675-2691.
|
| [38] |
姜昱林, 蓝奉军, 田智勇, 等. 3D打印技术在骨关节炎中的研究进展[J]. 中国医学创新, 2024, 21(28): 170-174.
|
| [39] |
Du Z, Yu X, Nie B, et al. Effects of magnesium coating on bone-implant interfaces with and without polyether-ether-ketone particle interference: a rabbit model based on porous Ti6Al4V implants[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(7): 2388-2396.
|
| [40] |
Haghpanah Z, Mondal D, Momenbeitollahi N, et al. In vitro evaluation of bone cell response to novel 3D-printable nanocomposite biomaterials for bone reconstruction[J]. J Biomed Mater Res A, 2024, 112(10): 1725-1739.
|
| [41] |
Zhang Q, Zhang XF. Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3-E1 cells by regulating TNF-like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway[J]. Mol Med Rep, 2019, 19(1): 41-50.
|
| [42] |
Farmani AR, Ali Salmeh M, Golkar Z, et al. Li-doped bioactive ceramics: promising biomaterials for tissue engineering and regenerative medicine[J/OL]. J Funct Biomater, 2022, 13(4): 162. DOI: 10.3390/jfb13040162.
|
| [43] |
Reichert A, Seidenstuecker M, Gadow R, et al. Carbon-fibre-reinforced SiC composite (C/SiSiC) as an alternative material for endoprosthesis: fabrication, mechanical and in-vitro biological properties[J/OL]. Materials, 2018, 11(2): 316. DOI: 10.3390/ma11020316.
|
| [44] |
Liu W, Dai N, Wang Y, et al. Role of autophagy in cadmium-induced apoptosis of primary rat osteoblasts[J/OL]. Sci Rep, 2016, 6: 20404. DOI: 10.1038/srep20404.
|
| [45] |
Zhang R, Lin J, Chen F, et al. Worldwide trends of research on periprosthetic osteolysis: a bibliometric study based on VOS viewer[J]. Indian J Orthop, 2021, 55(5): 1326-1334.
|