切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 44 -51. doi: 10.3877/cma.j.issn.1674-134X.2023.01.006

综述

间充质干细胞外泌体促进软骨再生的潜在机制研究
姜博庸1, 韩长旭2,()   
  1. 1. 010030 呼和浩特,内蒙古医科大学第二附属医院小儿骨科
    2. 010030 呼和浩特,内蒙古医科大学第二附属医院运动医学外科
  • 收稿日期:2021-10-20 出版日期:2023-02-01
  • 通信作者: 韩长旭
  • 基金资助:
    内蒙古自治区自然基金资助项目(2017MS0851,2017MS0815)

Potential mechanism of mesenchymal stem cell exosomes promoting cartilage regeneration

Boyong Jiang1, Changxu Han2,()   

  1. 1. Department of Pediatric Orthopedics, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010030, China
    2. Department of Sports Medicine, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010030, China
  • Received:2021-10-20 Published:2023-02-01
  • Corresponding author: Changxu Han
引用本文:

姜博庸, 韩长旭. 间充质干细胞外泌体促进软骨再生的潜在机制研究[J]. 中华关节外科杂志(电子版), 2023, 17(01): 44-51.

Boyong Jiang, Changxu Han. Potential mechanism of mesenchymal stem cell exosomes promoting cartilage regeneration[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(01): 44-51.

在目前的动物学研究和临床医学研究中已经得以证实,间充质干细胞(MSC)在软骨损伤后修复的过程中具有一定程度的有效性。研究人员过去普遍认为MSC的治疗功效主要是源于其所具备的特有软骨分化潜能,而现如今的大量研究认为其治疗的功效主要来源于其旁分泌过程,特别是外泌体在其中的参与具有十分重要的作用。本文探究MSC的外泌体在通过免疫调节与激发再生潜能的方式修复软骨损伤过程中的可能机制。

Current animal and clinical studies have demonstrated the effectiveness of mesenchymal stem cells (MSC) in repairing cartilage damage. Previous researchers believe that the therapeutic effect of MSC is mainly based on the chondrogenic differentiation potential of MSC. Now more and more studies have attributed the therapeutic effect to paracrine, especially the role of exosomes. This review aimed to investigate the potential mechanism of mesenchymal stem cell (MSC) exosomes in repair of cartilage damage through immune regulation and regeneration potential.

表1 MSCs在软骨修复和再生中的作用相关研究汇总表
表2 MSCs外泌体相关研究进展汇总表
[1]
Fransen M, Bridgett L, March L, et al. The epidemiology of osteoarthritis in Asia[J]. Int J Rheum Dis, 2011, 14(2): 113-121.
[2]
Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis:a disease of the joint as an organ[J]. Arthritis Rheum, 2012, 64(6): 1697-1707.
[3]
Marcacci M, Filardo G, Kon E. Treatment of cartilage lesions: what works and why? [J].Injury, 2013, 44 Suppl 1: S11-S15.
[4]
Toh WS, Brittberg M, Farr J, et al. Cellular senescence in aging and osteoarthritis[J]. Acta Orthop, 2016, 87(sup363): 6-14.
[5]
Ge Z, Hu Y, Heng BC, et al. Osteoarthritis and therapy[J]. Arthritis Rheum, 2006, 55(3): 493-500.
[6]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
[7]
罗欣,余丽梅. 外泌体在间充质干细胞治疗骨关节炎中的作用:新策略与新思路[J]. 中国组织工程研究2018, 22(1): 140-145.
[8]
高坤,朱文秀,曹亚飞.类风湿关节炎和骨关节炎发病及治疗中的外泌体[J].中国组织工程研究2018857(36):124-130.
[9]
Koh YG, Kwon OR, Kim YS, et al. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial[J]. Arthroscopy, 2016, 32(1): 97-109.
[10]
Windt TS, Vonk LA, Slapercortenbach I, et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons[J]. Stem Cells, 2017, 35(1): 256-264.
[11]
Toh WS, Foldager CB, Pei M, et al. Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration[J]. Stem Cell Rev Rep, 2014, 10(5): 686-696.
[12]
Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Cell Res, 2010, 4(3): 214-222.
[13]
Zhang S, Chu WC, Lai RC, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration[J]. Osteoarthritis Cartilage, 2016, 24(12): 2135-2140.
[14]
Zhang S, Chu W, Lai R, et al. Human Mesenchymal stem cell derived exosomes promote orderly cartilage regeneration in an immunocompetent eat osteochondral defect model[J]. Cytotherapy2016, 18(6S Suppl):S13-S13.
[15]
Lee K, Hui J, Song IC, et al. Injectable mesenchymal stem cell therapy for large cartilage defects-a porcine model[J]. Stem Cells, 2007, 25(11): 2964-2971.
[16]
Xie X, Wang Y, Zhao C, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration[J]. Biomaterials, 2012, 33(29): 7008-7018.
[17]
Lim CT, Ren X, Afizah MH, et al. Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol)fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model[J]. Tissue Eng Part A, 2013, 19(15/16): 1852-1861.
[18]
Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee[J]. Am J Sports Med, 2014, 42(3): 648-657.
[19]
Gobbi A, Scotti C, Karnatzikos G, et al. One-step surgery with multipotent stem cells and hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(8): 2494-2501.
[20]
Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the Poseidon randomized trial[J]. JAMA, 2012, 308(22): 2369-2379.
[21]
陈松,符培亮,吴海山,等.滑膜间充质干细胞在软骨修复组织工程中的研究进展[J/CD].中华关节外科杂志(电子版)20137(5):707-710.
[22]
Nejadnik H, Hui JH, Feng CE, et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation:an observational cohort study[J]. Am J Sports Med, 2010, 38(6): 1110-1116.
[23]
Wu L, Leijten J, Georgi N, et al. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation[J]. Tissue Eng Part A, 2011, 17(9/10): 1425-1436.
[24]
Wu L, Prins HJ, Helder MN, et al. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources[J]. Tissue Eng Part A, 2012, 18(15/16): 1542-1551.
[25]
Sze SK, De Kleijn D, Lai RC, et al. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells[J]. Mol Cell Proteomics, 2007, 6(10): 1680-1689.
[26]
Murphy MB, Moncivais K, Caplan A. Mesenchymal stem cells:environmentally responsive therapeutics for regenerative medicine[J/OL]. Exp Mol Med, 2013, 45(11): e54. DOI: 10.1038/emm.2013.94.
[27]
Lee MJ, Kim J, Kim MY, et al. Proteomic analysis of tumor necrosis factor-α-induced secretome of human adipose tissue-Derived mesenchymal stem cells[J]. J Proteome Res, 2010, 9(4): 1754-1762.
[28]
Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury[J]. J Am Soc Nephrol, 2009, 20(5): 1053-1067.
[29]
Lawson C, Vicencio JM, Yellon DM, et al. Microvesicles and exosomes:new players in metabolic and cardiovascular disease[J]. J Endocrinol, 2016, 228(2): R57-R71.
[30]
Thompson AG, Gray E, Heman-Ackah SM, et al. Extracellular vesicles in neurodegenerative disease[mdash]pathogenesis to biomarkers[J]. Nat Rev Neurol, 2016, 12(6): 346-357.
[31]
Bank I, Timmers L, Gijsberts CM, et al. The diagnostic and prognostic potential of plasma extracellular vesicles for cardiovascular disease[J]. Expert Rev Mol Diagn, 2015, 15(12): 1577-1588.
[32]
Kato T, Miyaki S, Ishitobi H, et al. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes[J/OL]. Arthritis Res Ther, 2014, 16(4): R163.DOI: 10.1186/ar4679.
[33]
Lai RC, Tan SS, Teh BJ, et al. Proteolytic potential ofthe MSC exosome proteome:implications for an exosome-mediated delivery of therapeutic proteasome[J/OL]. Int J Proteomics, 2012, 2012: 971907. DOI: 10.1155/2012/971907.
[34]
吴超超,尚曼等. 外泌体对不同细胞的调控修复作用研究进展[J]. 山东医学2017, 44(57):104-106.
[35]
Zhang B, Yeo RW, Tan KH, et al. Focus on extracellular vesicles: therapeutic potential of stem Cell-Derived extracellular vesicles[J/OL]. Int J Mol Sci, 2016, 17(2): 174. DOI: 10.3390/ijms17020174.
[36]
Zhang JY, Guan JJ, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J/OL]. J Transl Med, 2015, 13(1): 49.DOI: 10.1186/s12967-015-0417-0.
[37]
Zhang B, Wang M, Gong A, et al. HucMSC-exosome mediated Wnt4 signaling is required for cutaneous wound healing[J]. Stem Cells, 2015, 33(7): 2158-2168.
[38]
陈晨,黄辉,胡文佳,等.间充质干细胞源性外泌体治疗神经退行性疾病:应用中的问题及未来前景[J].中国组织工程研究201923(9):135-141.
[39]
Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models[J/OL]. Stem Cell Res Ther, 2014, 5(3): 76. DOI: 10.1186/scrt465.
[40]
Lee C, Mitsialis SA, Aslam M, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension[J]. Circulation, 2012, 126(22): 2601-2611.
[41]
Bo Y, Hui S, Chang S, et al. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1[J/OL]. Sci Rep, 2016, 6(1): 34562. DOI: 10.1038/srep34562.
[42]
Qi X, Zhang J, Yuan H, et al. Exosomes secreted by Human-Induced pluripotent stem Cell-Derived mesenchymal stem cells repair Critical-Sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats[J]. Int J Biol Sci, 2016, 12(7): 836-849.
[43]
Lai RC, Yeo RW, Tan KH, et al. Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation[J]. Regen Med, 2013, 8(2): 197-209.
[44]
Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome:a novel stem cell-based therapy for cardiovascular disease[J]. Regen Med, 2011, 6(4): 481-492.
[45]
Wang Y, Zhao X, Lotz M, et al. Mitochondrial biogenesis is impaired in osteoarthritic chondrocytes but reversible via peroxisome proliferator-activated receptor-γ coactivator 1α[J]. Arthritis Rheumatol, 2015, 67(8): 2141-2153.
[46]
Vaamonde GC, Riveiro-Naveira RR, Valcárcel-Ares MN, et al. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes[J]. Arthritis Rheum, 2012, 64(9): 2927-2936.
[47]
Loeser RF. Aging and osteoarthritis[J]. Curr Opin Rheumatol, 2011, 23(5): 492-496.
[48]
Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels,decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J]. Cell Res, 2013, 10(3): 301-312.
[49]
Chen PF, Lin Z, Wang YY, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration[J]. Theranostics, 2019, 9(9): 2439-2459.
[50]
Chuma H, Mizuta H, Kudo S, et al. One day exposure to FGF-2 was sufficient for the regenerative repair of full-thickness defects of articular cartilage in rabbits[J]. Osteoarthritis Cartilage, 2004, 12(10): 834-842.
[51]
Di Virgilio F. Purines, purinergic receptors, and cancer[J]. Cancer Res, 2012, 72(21): 5441-5447.
[52]
Vitiello L, Gorini S, Rosano G, et al. Immunoregulation through extracellular nucleotides[J]. Blood, 2012, 120(3): 511-518.
[53]
Colgan SP, Eltzschig HK, Eckle T, et al. Physiological roles for ecto-5’-nucleotidase (CD73) [J]. Purinergic Signal, 2006, 2(2): 351-360.
[54]
Lai CR, Yeo RWY, Tan SS, et al. Mesenchymal stem cell exosomes: the future MSC-based therapy? [M/OL]// Chase LG, Vemuri MC. Mesenchymal Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Totowa: Humana Press, 2013: 39-61. DOI: 10.1007/978-1-62703-200-1_3
[55]
Kimura K, Breitbach MSchildberg FA, et al. Bone marrow CD73+ mesenchymal stem cells display increased stemness in vitro and promote fracture healing in vivo[J/OL].Bone Rep, 2021, 15: 101133. DOI: 10.1016/j.bonr.2021.101133.
[56]
Ding J, Chen B, Lv T, et al. Bone marrow mesenchymal stem cell-based engineered cartilage ameliorates polyglycolic acid/polylactic acid scaffold? Induced inflammation through M2 polarization of macrophages in a pig model[J]. Stem Cells Transl Med, 2016, 5(8): 1079-1089.
[57]
Utomo L, Van Osch GJ, Bayon Y, et al. Guiding synovial inflammation by macrophage phenotype modulation:an in vitro study towards a therapy for osteoarthritis[J]. Osteoarthritis Cartilage, 2016, 24(9): 1629-1638.
[58]
Liu H, Lu K, Macary PA, et al. Soluble molecules are key in maintaining the immunomodulatory activity of murine mesenchymal stromal cells[J]. J Cell Sci, 2012, 125(Pt 1): 200-208.
[59]
Chen PM, Liu KJ, Hsu PJ, et al. Induction of immunomodulatory monocytes by human mesenchymal stem cell-derived hepatocyte growthfactor through ERK1/2[J]. J Leukoc Biol, 2014, 96(2): 295-303.
[60]
Ghannam S, Bouffi C, Djouad F, et al. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications[J/OL]. Stem Cell Res Ther, 2010, 1(1): 2.DOI: 10.1186/scrt2.
[61]
Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes[J]. Semin Cell Dev Biol, 2015, 40:82-88.
[62]
Zhang J, Rong Y, Luo C, et al. Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization[J]. Aging (Albany NY), 2020, 12(24): 25138-25152.
[63]
Chen TS, Lai RC, Lee MM, et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs[J]. Nucleic Acids Res, 2010, 38(1): 215-224.
[64]
Ham O, Song BW, Lee SY, et al. The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling[J]. Biomaterials, 2012, 33(18): 4500-4507.
[65]
Meng F, Zhang Z, Chen W, et al. MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses[J]. Osteoarthritis Cartilage 2016, 24(5): 932-941.
[66]
Ning G, Liu X, Dai M, et al. MicroRNA-92a upholds Bmp signaling by targeting noggin3 during pharyngeal cartilage formation[J]. Dev Cell, 2013, 24(3): 283-295.
[67]
Kim D, Song J, Jin EJ. MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2[J]. J Biol Chem, 2010, 285(35): 26900-26907.
[68]
Yang B, Guo H, Zhang Y, et al. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9[J/OL]. PLoS One, 2011, 6(7): e21679. DOI: 10.1371/journal.pone.0021679.
[69]
严广斌,钱东阳,卢永辉等.兔骨髓间充质干细胞修复膝关节软骨缺损的实验研究[J/CD]. 中华关节外科杂志(电子版), 20104(3):48-51
[70]
Iliopoulos D, Malizos KN, Oikonomou P, et al. Integrative MicroRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks[J/OL]. PLoS One, 2008, 3(11): e3740. DOI:10.1371/journal.pone.0003740.
[71]
Hou C, Zhang Z, Zhang Z, et al. Presence and function of microRNA-92a in chondrogenic ATDC5 and adipose-derived mesenchymal stem cells[J]. Mol Med Rep, 2015, 12(4): 4877-4886.
[72]
Yang W, Lee S, Yoon J, et al. Stem cell therapy status in veterinary medicine[J]. Tissue Eng Regen Med, 2015, 12(2): 67-77.
[73]
李嘉,王智慧,吴迪,等.间充质干细胞源性外泌体在骨科疾病治疗中的作用与应用前景[J].中国组织工程研究2020024(025):4068-4072.
[74]
Meirelles L, Fontes AM, Covas DT, et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells[J]. Cytokine Growth Factor Rev, 2009, 20(5/6): 419-427.
[75]
同志超,王坤正,同志勤,等.聚磷酸钙纤维和左旋聚乳酸软骨支架复合自体骨髓间充质干细胞构建组织工程化人工关节软骨[J/CD]. 中华关节外科杂志(电子版)20071(2):104-107
[76]
Matsukawa T, Sakai T, Yonezawa T, et al. MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes[J]. Arthritis Res Ther, 2013, 15(1): 1-11.
[1] 赵敏, 施依璐, 段莎莎, 王雅皙, 赵捷, 赵海玥, 张璐, 白天昊, 张小杉. RGD微泡介导高频超声造影对类风湿性关节炎滑膜新生血管的定量评估[J]. 中华医学超声杂志(电子版), 2023, 20(05): 530-536.
[2] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[3] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[4] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[5] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[6] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[7] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[8] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[9] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[10] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[11] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[12] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[13] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[14] 张子砚, 曾红, 许苑晶, 郭璐琦, 王金武, 王少白, 任富超, 缪伟强, 戴尅戎, 王茹. 膝关节生物力学标志物预测膝关节炎研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 315-320.
[15] 许瑛杰, 朱佳, 康闽, 侯俊, 苏改秀, 李胜男, 张丹, 赖建铭. 风湿病合并消化道穿孔患儿的临床特点分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 648-654.
阅读次数
全文


摘要