[1] |
Wang LJ, Zeng N, Yan ZP, et al. Post-traumatic osteoarthritis following ACL injury[J/OL]. Arthritis Res Ther, 2020, 22(1): 57. DOI: 10.1186/s13075-020-02156-5.
|
[2] |
Riccardo C, Fabio C, Pietro R. Knee osteoarthritis after reconstruction of isolated anterior cruciate ligament injuries: asystematic literature review[J]. Joints, 2017, 5(1): 39-43.
|
[3] |
Everhart JS, Yalcin S, Spindler KP. Twenty-year outcomes after anterior cruciate ligament reconstruction: asystematic review of prospectively collected data[J]. Am J Sports Med, 2022, 50(10): 2842-2852.
|
[4] |
Diemer F, Zebisch J, Saueressig T. Consequences of anterior cruciate ligament rupture: a systematic umbrella review[J]. Sportverletz Sportschaden, 2022, 36(1): 18-37.
|
[5] |
Cuzzolin M, Previtali D, Zaffagnini S, et al. Anterior cruciate ligament reconstruction versus nonoperative treatment: better function and less secondary meniscectomies but No difference in knee osteoarthritis-ameta-analysis[J]. Cartilage, 2021, 13(1_suppl): 1658S-1670S.
|
[6] |
Narez GE, Fischenich KM, Donahue TLH. Experimental animal models of post-traumatic osteoarthritis of the knee[J/OL]. Orthop Rev, 2020, 12(2): 8448. DOI: 10.4081/or.2020.8448.
|
[7] |
Zhao R, Dong Z, Wei X, et al. Inflammatory factors are crucial for the pathogenesis of post-traumatic osteoarthritis confirmed by a novel porcine model: " Idealized" anterior cruciate ligament reconstruction" and gait analysis[J/OL]. Int Immunopharmacol, 2021, 99: 107905. DOI: 10.1016/j.intimp.2021.107905.
|
[8] |
Carbone A, Rodeo S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries[J]. J Orthop Res, 2017, 35(3): 397-405.
|
[9] |
Ding L, Buckwalter JA, Martin JA. DAMPs synergize with cytokines or fibronectin fragment on inducing chondrolysis but lose effect when acting alone[J/OL]. Mediators Inflamm, 2017, 2017: 2642549. DOI: 10.1155/2017/2642549.
|
[10] |
Riegger J, Brenner RE. Evidence of necroptosis in osteoarthritic disease: investigation of blunt mechanical impact as possible trigger in regulated necrosis[J/OL]. Cell Death Dis, 2019, 10(10): 683. DOI: 10.1038/s41419-019-1930-5.
|
[11] |
Iqbal SM, Leonard C, Regmi SC, et al. Lubricin/proteoglycan 4 binds to and regulates the activity of toll-like receptors in vitro[J]. Sci Rep, 2016, 6: 18910. DOI: 10.1038/srep18910.
|
[12] |
Rosenberg JH, Rai V, Dilisio MF, et al. Damage-associated molecular patterns in the pathogenesis of osteoarthritis: potentially novel therapeutic targets[J]. Mol Cell Biochem, 2017, 434(1-2): 171-179.
|
[13] |
Brown SB, Hornyak JA, Jungels RR, et al. Characterization of post-traumatic osteoarthritis in rats following anterior cruciate ligament rupture by non-invasive knee injury (NIKI)[J]. J Orthop Res, 2020, 38(2): 356-367.
|
[14] |
McCulloch K, Huesa C, Dunning L, et al. Accelerated post traumatic osteoarthritis in a dual injury murine model[J]. Osteoarthritis Cartilage, 2019, 27(12): 1800-1810.
|
[15] |
Alonso B, Bravo B, Mediavilla L, et al. Osteoarthritis-related biomarkers profile in chronic anterior cruciate ligament injured knee[J]. Knee, 2020, 27(1): 51-60.
|
[16] |
Riegger J, Brenner RE. Pathomechanisms of posttraumatic osteoarthritis: chondrocyte behavior and fate in a precarious environment[J/OL]. Int J Mol Sci, 2020, 21(5): 1560. DOI: 10.3390/ijms21051560.
|
[17] |
Huang K, Cai HL, Zhang PL, et al. Comparison between two rabbit models of posttraumatic osteoarthritis: a longitudinal tear in the medial meniscus and anterior cruciate ligament transection[J]. J Orthop Res, 2020, 38(12): 2721-2730.
|
[18] |
Favero M, Belluzzi E, Trisolino G, et al. Inflammatory molecules produced by meniscus and synovium in early and end-stage osteoarthritis: a coculture study[J]. J Cell Physiol, 2019, 234(7): 11176-11187.
|
[19] |
Proffen BL, Sieker JT, Murray MM, et al. Extracellular matrix-blood composite injection reduces post-traumatic osteoarthritis after anterior cruciate ligament injury in the rat[J]. J Orthop Res, 2016, 34(6): 995-1003.
|
[20] |
Titchenal MR, Chu CR, Erhart-Hledik JC, et al. Early changes in knee center of rotation during walking after anterior cruciate ligament reconstruction correlate with later changes in patient-reported outcomes[J]. Am J Sports Med, 2017, 45(4): 915-921.
|
[21] |
Øiestad BE, Juhl CB, Culvenor AG, et al. Knee extensor muscle weakness is a risk factor for the development of knee osteoarthritis: an updated systematic review and meta-analysis including 46 819 men and women[J]. Br J Sports Med, 2022, 56(6): 349-355.
|
[22] |
Harkey MS, Luc-Harkey BA, Lepley AS, et al. Persistent muscle inhibition after anterior cruciate ligament reconstruction: role of reflex excitability[J]. Med Sci SportsExerc, 2016, 48(12): 2370-2377.
|
[23] |
Smeets A, Malfait B, Dingenen B, et al. Is knee neuromuscular activity related to anterior cruciate ligament injury risk? A pilot study[J]. Knee, 2019, 26(1): 40-51.
|
[24] |
Tayfur B, Charuphongsa C, Morrissey D, et al. Neuromuscular function of the knee joint following knee injuries: does it ever get back to normal? A systematic review with meta-analyses[J]. Sports Med, 2021, 51(2): 321-338.
|
[25] |
Harris KP, Driban JB, Sitler MR, et al. Tibiofemoral osteoarthritis after surgical or nonsurgical treatment of anterior cruciate ligament rupture: asystematic review[J]. J Athl Train, 2017, 52(6): 507-517.
|
[26] |
He C, He W, Li Y, et al. Biomechanics of knee joints after anterior cruciate ligament reconstruction[J]. J Knee Surg, 2018, 31(4): 352-358.
|
[27] |
Wellsandt E, Khandha A, Capin J, et al. Operative and nonoperative management of anterior cruciate ligament injury: differences in gait biomechanics at 5 years[J]. J Orthop Res, 2020, 38(12): 2675-2684.
|
[28] |
Hagmeijer MH, Hevesi M, Desai VS, et al. Secondary meniscal tears in patients with anterior cruciate ligament injury: relationship among operative management, osteoarthritis, and arthroplasty at 18-year mean follow-up[J]. Am J Sports Med, 2019, 47(7): 1583-1590.
|
[29] |
Webster KE, Hewett TE. Anterior cruciate ligament injury and knee osteoarthritis: an umbrella systematic review and meta-analysis[J]. Clin J Sport Med, 2022, 32(2): 145-152.
|
[30] |
Ding DY, Tucker LY, RuggCM. Comparison of anterior cruciate ligament tears treated nonoperatively versus with reconstruction: risk of subsequent surgery[J]. Am J Sports Med, 2022, 50(3): 652-661.
|
[31] |
Konrads C, Reppenhagen S, Belder D, et al. Long-term outcome of anterior cruciate ligament tear without reconstruction: a longitudinal prospective study[J]. Int Orthop, 2016, 40(11): 2325-2330.
|
[32] |
Krause M, Freudenthaler F, Frosch KH, et al. Operative versus conservative treatment of anterior cruciate ligament rupture[J]. Dtsch Arztebl Int, 2018, 115(51-52): 855-862.
|
[33] |
Lee YS, Lee OS, Lee SH, et al. Effect of the timing of anterior cruciate ligament reconstruction on clinical and stability outcomes: ASystematicreview and meta-analysis[J]. Arthroscopy, 2018, 34(2): 592-602.
|
[34] |
Ferguson D, Palmer A, Khan S, et al. Early or delayed anterior cruciate ligament reconstruction: is one superior? A systematic review and meta-analysis[J]. Eur J Orthop Surg Traumatol, 2019, 29(6): 1277-1289.
|
[35] |
Krutsch W, Zellner J, Baumann F, et al. Timing of anterior cruciate ligament reconstruction within the first year after trauma and its influence on treatment of cartilage and meniscus pathology[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(2): 418-425.
|
[36] |
Herbst E, Hoser C, Gföller P, et al. Impact of surgical timing on the outcome of anterior cruciate ligament reconstruction[J]. Knee Surg SportsTraumatolArthrosc, 2017, 25(2): 569-577.
|
[37] |
Hur CI, Song EK, Kim SK, et al. Early anterior cruciate ligament reconstruction can save meniscus without any complications[J]. Indian J Orthop, 2017, 51(2): 168-173.
|
[38] |
Manandhar RR, Chandrashekhar K, Kumaraswamy V, et al. Functional outcome of an early anterior cruciate ligament reconstruction in comparison to delayed: are we waiting in vain?[J]. J Clin Orthop Trauma, 2018, 9(2): 163-166.
|
[39] |
Tardy N, Boisrenoult P, Teissier P, et al. Clinical outcomes after multiligament injured knees: medial versus lateral reconstructions[J]. Knee Surg SportsTraumatolArthrosc, 2017, 25(2): 524-531.
|
[40] |
Chen KH, Chiang ER, Wang HY, et al. Correlation of meniscal tear with timing of anterior cruciate ligament reconstruction in patients without initially concurrent meniscal tear[J]. J Knee Surg, 2019, 32(11): 1128-1132.
|
[41] |
Kim SH, Han SJ, Park YB, et al. A systematic review comparing the results of early vs delayed ligament surgeries in single anterior cruciate ligament and multiligament knee injuries[J/OL]. Knee Surg Relat Res, 2021, 33(1): 1. DOI: 10.1186/s43019-020-00086-9.
|
[42] |
Wirth W, Eckstein F, Culvenor AG, et al. Early anterior cruciate ligament reconstruction does not affect 5 year change in knee cartilage thickness: secondary analysis of a randomized clinical trial[J]. Osteoarthritis Cartilage, 2021, 29(4): 518-526.
|
[43] |
Matthewson G, Kooner S, Rabbani R, etal. Does a delay in anterior cruciate ligament reconstruction increase the incidence of secondary pathology in the knee? A systematic review and meta-analysis[J]. Clin J Sport Med, 2021, 31(3): 313-320.
|
[44] |
Heard BJ, Barton KI, Chung M, et al. Single intra-articular dexamethasone injection immediately post-surgery in a rabbit model mitigates early inflammatory responses and post-traumatic osteoarthritis-like alterations[J]. J Orthop Res, 2015, 33(12): 1826-1834.
|
[45] |
Chen H, Tie K, Qi Y, et al. Anteromedial versus transtibial technique in single-bundle autologous hamstring ACL reconstruction: a meta-analysis of prospective randomized controlled trials[J/OL]. J Orthop Surg Res, 2017, 12(1): 167. DOI: 10.1186/s13018-017-0671-3.
|
[46] |
Rothrauff BB, Jorge A, de Sa D, et al. Anatomic ACL reconstruction reduces risk of post-traumatic osteoarthritis: a systematic review with minimum 10-year follow-up[J]. Knee Surg SportsTraumatolArthrosc, 2020, 28(4): 1072-1084.
|
[47] |
Oh JY, Kim KT, Park YJ, et al. Biomechanical comparison of single-bundle versus double-bundle anterior cruciate ligament reconstruction: a meta-analysis[J/OL]. Knee Surg Relat Res, 2020, 32(1): 14. DOI: 10.1186/s43019-020-00033-8.
|
[48] |
Malempati CS, Metzler AV, Johnson DL. Single-bundle anatomic anterior cruciate ligament reconstruction: surgical technique pearls and pitfalls[J]. Clin Sports Med, 2017, 36(1): 53-70.
|
[49] |
Wang W, Shen L, Jin Z, et al. Clinical efficacy of anterior cruciate ligament reconstruction: is an anatomical double-bundle or anatomical single-bundle better? A meta-analysis [J]. Int J Clin Exp Med,2018,11(11): 11357-11371.
|
[50] |
Chen K, Zhu W, Zheng Y, et al. A retrospective study to compare the clinical effects of individualized anatomic single-and double-bundle anterior cruciate ligament reconstruction surgery[J/OL]. Sci Rep, 2020, 10(1): 14712. DOI: 10.1038/s41598-020-71721-4.
|
[51] |
Maeyama A, Hoshino Y, Kato Y, et al. Anatomic double bundle ACL reconstruction outperforms any types of single bundle ACL reconstructions in controlling dynamic rotational laxity[J]. Knee Surg SportsTraumatolArthrosc, 2018, 26(5): 1414-1419.
|
[52] |
Mao Z, Wang J, Wang Y, et al. Double-bundle anterior cruciate ligament reconstruction technique has advantages in chondroprotection and knee laxity control compared with single-bundle technique: a long-term follow-up with a minimum of 12 years[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(9): 3105-3114.
|
[53] |
Mayr HO, Stoehr A. Editorial commentary: No difference in knee osteoarthritis after single-bundle versus double-bundle anterior cruciate ligament reconstruction[J]. Arthroscopy, 2019, 35(3): 1004-1005.
|
[54] |
Järvelä S, Kiekara T, Suomalainen P, et al. Double-bundle versus single-bundle anterior cruciate ligament reconstruction:aprospective randomized study with 10-year results[J]. Am J Sports Med, 2017, 45(11): 2578-2585.
|
[55] |
Chen H, Chen B, Tie K, et al. Single-bundle versus double-bundle autologous anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials at 5-year minimum follow-up[J/OL]. J Orthop Surg Res, 2018, 13(1): 50. DOI: 10.1186/s13018-018-0753-x.
|
[56] |
Yoon KH, Kim JS, Kim SJ, et al. Eight-year results of transtibial nonanatomic single-bundle versus double-bundle anterior cruciate ligament reconstruction: clinical, radiologic outcomes and survivorship[J/OL]. J Orthop Surg, 2019, 27(2): 2309499019840827. DOI: 10.1177/2309499019840827.
|
[57] |
中国研究型医院学会运动医学专业委员会. 膝关节前外侧结构加强及重建专家共识(2021年版)[J/CD]. 中华关节外科杂志(电子版), 2021, 15(2): 131-136.
|
[58] |
Getgood A, Brown C, Lording T, et al. The anterolateral complex of the knee: results from the International ALC Consensus Group Meeting[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(1): 166-176.
|
[59] |
Helito CP, Sobrado MF, Giglio PN, et al. Combined reconstruction of the anterolateral ligament in patients with anterior cruciate ligament injury and ligamentous hyperlaxity leads to better clinical stability and a lower failure rate than isolated anterior cruciate ligament reconstruction[J]. Arthroscopy, 2019, 35(9): 2648-2654.
|
[60] |
Inderhaug E, Stephen JM, Williams A, et al. Anterolateral tenodesis or anterolateral ligament complex reconstruction:effect of flexion angle at graft fixation when combined with ACL reconstruction[J]. Am J Sports Med, 2017, 45(13): 3089-3097.
|
[61] |
Geeslin AG, Moatshe G, Chahla J, et al. Anterolateral knee extra-articular stabilizers:arobotic study comparing anterolateral ligament reconstruction and modified lemaire lateral extra-articular tenodesis[J]. Am J Sports Med, 2018, 46(3): 607-616.
|
[62] |
Inderhaug E, Stephen JM, Williams A, et al. Biomechanical comparison of anterolateral procedures combined with anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2017, 45(2): 347-354.
|
[63] |
Zaffagnini S, Marcheggiani Muccioli GM, Grassi A, et al. Over-the-top ACL reconstruction plus extra-articular lateral tenodesis with hamstring tendon grafts: prospective evaluation with 20-year minimum follow-up[J]. Am J Sports Med, 2017, 45(14): 3233-3242.
|
[64] |
Mao Y, Zhang K, Li J, et al. Supplementary lateral extra-articular tenodesis for residual anterolateral rotatory instability in patients undergoing single-bundle anterior cruciate ligament reconstruction: ameta-analysis of randomized controlled trials[J/OL]. Orthop J Sports Med, 2021, 9(5): 23259671211002282. DOI: 10.1177/23259671211002282.
|
[65] |
Chen J, Wang C, Xu C, et al. Effects of anterolateral structure augmentation on the in vivokinematics of anterior cruciate ligament-reconstructed knees[J]. Am J Sports Med, 2021, 49(3): 656-666.
|
[66] |
Castoldi M, Magnussen RA, Gunst S, et al. A randomized controlled trial of bone-patellar tendon-bone anterior cruciate ligament reconstruction with and without lateral extra-articular tenodesis: 19-year clinical and radiological follow-up[J]. Am J Sports Med, 2020, 48(7): 1665-1672.
|
[67] |
Saithna A, Daggett M, Helito CP, et al. Clinical results of combined ACL and anterolateral ligament reconstruction: anarrative review from the SANTI study group[J]. J Knee Surg, 2021, 34(9): 962-970.
|
[68] |
Fan D, Ma J, Zhang L. Patellar tendon versus artificial grafts in anterior cruciate ligament reconstruction: a systematic review and meta-analysis[J/OL]. J Orthop Surg Res, 2021, 16(1): 478. DOI: 10.1186/s13018-021-02624-x.
|
[69] |
Arnold MP, Calcei JG, Vogel N, et al. ACL Study Group survey reveals the evolution of anterior cruciate ligament reconstruction graft choice over the past three decades[J]. Knee Surg SportsTraumatolArthrosc, 2021, 29(11): 3871-3876.
|
[70] |
Duchman KR, Lynch TS, Spindler KP. Graft selection in anterior cruciate ligament surgery: who gets what and why?[J]. Clin Sports Med, 2017, 36(1): 25-33.
|
[71] |
Lecoq FA, Parienti JJ, Murison J, et al. Graft choice and the incidence of osteoarthritis after anterior cruciate ligament reconstruction: acausal analysis from a cohort of 541 patients[J]. Am J Sports Med, 2018, 46(12): 2842-2850.
|
[72] |
Ciccotti MC, Secrist E, Tjoumakaris F, et al. Anatomic anterior cruciate ligament reconstruction via independent tunnel drilling: asystematic review of randomized controlled trials comparing patellar tendon and hamstring autografts[J]. Arthroscopy, 2017, 33(5): 1062-1071.e5.
|
[73] |
Johnston CD, Goodwin JS, Spang JT, et al. Gait biomechanics in individuals with patellar tendon and hamstring tendon anterior cruciate ligament reconstruction grafts[J]. J Biomech, 2019, 82: 103-108.
|
[74] |
Zhao L, Lu M, Deng M, et al. Outcome of bone-patellar tendon-bone vs hamstring tendon autograft for anterior cruciate ligament reconstruction:a meta-analysis of randomized controlled trials with a 5-year minimum follow-up[J/OL]. Medicine, 2020, 99(48): e23476. DOI: 10.1097/MD.0000000000023476.
|
[75] |
Macri EM, Stefanik JJ, Khan KK, et al. Is tibiofemoral or patellofemoral alignment or trochlear morphology associated with patellofemoral osteoarthritis? A systematic review[J]. Arthritis Care Res, 2016, 68(10): 1453-1470.
|
[76] |
Macri EM, Culvenor AG, Morris HG, et al. Lateral displacement, sulcus angle and trochlear angle are associated with early patellofemoral osteoarthritis following anterior cruciate ligament reconstruction[J]. Knee Surg SportsTraumatolArthrosc, 2018, 26(9): 2622-2629.
|
[77] |
Culvenor AG, Perraton L, Guermazi A, et al. Knee kinematics and kinetics are associated with early patellofemoral osteoarthritis following anterior cruciate ligament reconstruction[J]. Osteoarthritis Cartilage, 2016, 24(9): 1548-1553.
|
[78] |
Macri EM, Patterson BE, Crossley KM, et al. Does patellar alignment or trochlear morphology predict worsening of patellofemoral disease within the first 5 years after anterior cruciate ligament reconstruction?[J]. Eur J Radiol, 2019, 113: 32-38.
|
[79] |
Rai MF, Brophy RH, Sandell LJ. Osteoarthritis following meniscus and ligament injury: insights from translational studies and animal models[J]. Curr Opin Rheumatol, 2019, 31(1): 70-79.
|
[80] |
Rai MF, Brophy RH, Rosen V. Molecular biology of meniscus pathology: lessons learned from translational studies and mouse models[J]. J Orthop Res, 2020, 38(9): 1895-1904.
|
[81] |
Brophy RH, Sandell LJ, Rai MF. Traumatic and degenerative Meniscustears have different gene expression signatures[J]. Am J Sports Med, 2017, 45(1): 114-120.
|
[82] |
Kamatsuki Y, Furumatsu T, Fujii M, et al. Complete tear of the lateral meniscus posterior root is associated with meniscal extrusion in anterior cruciate ligament deficient knees[J]. J Orthop Res, 2018, 36(7): 1894-1900.
|
[83] |
Poulsen E, Goncalves GH, Bricca A, et al. Knee osteoarthritis risk is increased 4-6 fold after knee injury-a systematic review and meta-analysis[J]. Br J Sports Med, 2019, 53(23): 1454-1463.
|
[84] |
Cristiani R, Rönnblad E, Engström B, et al. Medial Meniscusresection increases and medial Meniscusrepair preserves anterior knee laxity:acohort study of 4497 patients with primary anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2018, 46(2): 357-362.
|
[85] |
Cheung EC, DiLallo M, Feeley BT, et al. Osteoarthritis and ACL reconstruction-myths and risks[J]. Curr Rev Musculoskelet Med, 2020, 13(1): 115-122.
|
[86] |
Chang JC, Sebastian A, Murugesh DK, et al. Global molecular changes in a tibial compression induced ACL rupture model of post-traumatic osteoarthritis[J]. J Orthop Res, 2017, 35(3): 474-485.
|
[87] |
Fischenich KM, Pauly HM, Button KD, et al. A study of acute and chronic tissue changes in surgical and traumatically-induced experimental models of knee joint injury using magnetic resonance imaging and micro-computed tomography[J]. Osteoarthritis Cartilage, 2017, 25(4): 561-569.
|