切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (02) : 225 -230. doi: 10.3877/cma.j.issn.1674-134X.2022.02.014

综述

胫骨平台后倾角的测量及其在全膝关节置换术中的意义
张立毅1, 李志昌1, 林剑浩1,()   
  1. 1. 100044 北京大学人民医院骨关节科
  • 收稿日期:2020-01-16 出版日期:2022-04-01
  • 通信作者: 林剑浩
  • 基金资助:
    国家重点研发计划(2020YFC2004904)

Measurement of posterior tibial slope and its significance in total knee arthroplasty

Liyi Zhang1, Zhichang Li1, Jianhao Lin1,()   

  1. 1. Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing 100044, China
  • Received:2020-01-16 Published:2022-04-01
  • Corresponding author: Jianhao Lin
引用本文:

张立毅, 李志昌, 林剑浩. 胫骨平台后倾角的测量及其在全膝关节置换术中的意义[J]. 中华关节外科杂志(电子版), 2022, 16(02): 225-230.

Liyi Zhang, Zhichang Li, Jianhao Lin. Measurement of posterior tibial slope and its significance in total knee arthroplasty[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(02): 225-230.

胫骨平台后倾角(PTS)是全膝关节置换术(TKA)中重要的参数。临床上测量PTS的方法主要包括:X线、CT、MRI。X线测量PTS需选择合适的参考轴,常用的参考轴包括:胫骨近端解剖轴、胫骨骨干解剖轴、腓骨骨干纵轴、胫骨中上段前侧骨皮质延长线、胫骨后侧骨皮质延长线,不同参考轴具有各自的优缺点。X线测量PTS简单便捷,但受到投照角度的影响且不能分别测量内外侧平台。CT、MRI可使用三维重建技术测量PTS,不受投照角度的影响且可以分别测量内外侧平台。MRI还可以测量包含软骨、半月板的PTS。TKA术中,PTS可影响膝关节的屈曲度、稳定性和周围韧带的张力。PTS的增加可通过后滚机制、松弛韧带增加膝关节屈曲度。然而,PTS的增加也会造成韧带松弛、胫骨假体前向碰撞,从而导致膝关节的不稳定,进而导致假体的磨损。TKA术中,PTS的增加还可以有效减少后交叉韧带的张力,但会因手术截骨增加后交叉韧带损伤的风险。另外,PTS的增加还可以通过增加力矩的方式,减少伸膝时股四头肌腱的张力。值得注意的是,胫骨截骨参考、股骨后髁偏心距也会影响PTS的临床作用。目前,关于PTS的研究主要基于欧洲人群。PTS在亚洲人群中的测量和临床意义,有待进一步的探索。

Posterior tibial slope (PTS) is an important parameter in total knee arthroplasty (TKA). Clinicians can use X-ray, CT and MRI to measure PTS. When using X-ray, clinicians need to select a suitable reference axis. The available reference axes include: tibial proximal anatomic axis, tibial shaft anatomic axis, fibular shaft axis, anterior tibial cortex, posterior tibial cortex. Different reference axes have their own advantages and disadvantages. The X-ray measurement of PTS is affected by the projection angle, and cannot measure the lateral posterior tibial slope and the medial posterior tibial slopeseparately. CT and MRI can measure PTS by using 3D reconstruction techniques, which is not influenced by the projection angle and can measure the lateral and medial tibial slope separately. MRI can also measure PTS containing cartilage and meniscus. In TKA, PTS can affect the range of motion, stability and ligaments’ tension of the knee through a variety of mechanisms. Increasing of PTS can effectively increase postoperative flexion through the roll-back mechanism and relaxation of the ligament. However, increasing of PTS will also cause relaxation of the ligament and anterior impingement of the tibial prosthesis, which results in instability of the knee and wear of the prosthesis. Furthermore, increasing of PTS can significantly reduce the tension of the posterior cruciate ligament, but increase the risk of posterior cruciate ligament injury due to osteotomy. In addition, increasing of PTS can reduce the tension of the quadriceps tendon in extension by increasing the torque. It is worth noting that clinical affects of PTS is influenced by different osteotomy references and the femoral condyle. At present, the researches on PTS are mostly based on European population. The measurement and clinical significance of PTS in Asian population need further exploration.

图1 测量PTS(胫骨平台后倾角)可使用参考轴。图A为ATC(胫骨中上段前皮质轴);图B为TPAA(胫骨近端解剖轴);图C为TSAA(胫骨骨干解剖轴);图D为PTC(胫骨中上段后皮质轴);图E为FSA(腓骨骨干纵轴)
图2 CT测量PTS(胫骨平台后倾角)。图A为外侧PTS;图B为内侧PTS
图3 MRI测量PTS(胫骨平台后倾角)。图A为骨性胫骨平台后倾角;图B为包含半月板软骨的胫骨平台后倾角
[1]
Meric G, Gracitelli GC, Aram L, et al. Tibial slope is highly variable in patients undergoing primary total knee arthroplasty: analysis of 13,546 computed tomography scans[J]. J Arthroplasty, 2015, 30(7): 1228-1232.
[2]
Faschingbauer M, Sgroi M, Juchems M, et al. Can the tibial slope be measured on lateral knee radiographs?[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(12): 3163-3167.
[3]
Yoo JH, Chang CB, Shin KS, et al. Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes[J]. J Arthroplasty, 2008, 23(4): 586-592.
[4]
王戟森,陈坚锋,潘耀成,等.人工膝关节置换术中的胫骨平台后倾角[J].中国矫形外科杂志201624(9):826-831.
[5]
Brazier J, Migaud H, Gougeon F, et al. Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees[J]. Rev Chir Orthop Reparatrice Appar Mot, 1996, 82(3): 195-200.
[6]
Zhang Y, Chen Y, Qiang M, et al. Comparison between three-dimensional CT and conventional radiography in proximal tibia morphology[J/OL]. Medicine, 2018, 97(30): e11632. DOI: 10.1097/MD.0000000000011632.
[7]
Douglas SW, Jeremy JG, Glenn DW. An anatomic investigation into the relationship between posterior condylar offset and posterior tibial slope of 1,138 cadaveric knees[J]. J Arthroplasty, 2016, 32(5): 1659-1664.
[8]
Ma QL, Lipman JD, Cheng CK, et al. A comparison between Chinese and Caucasian 3-Dimensional bony morphometry in presimulated and postsimulated osteotomy for total knee arthroplasty[J]. J Arthroplasty, 2017, 32(9): 2878-2886.
[9]
Hudek R, Schmutz S, Regenfelder F, et al. Novel measurement technique of the tibial slope on conventional MRI[J]. Clin Orthop Relat Res, 2009, 467(8): 2066-2072.
[10]
Cinotti G, Sessa P, Ragusa G, et al. Influence of cartilage and menisci on the sagittal slope of the tibial plateaus[J]. Clin Anat, 2013, 26(7): 883-892.
[11]
Kim JM, Moon MS. Squatting following total knee arthroplasty[J]. Clin Orthop Relat Res, 1995, (313): 177-186.
[12]
Kim JH. Effect of posterior femoral condylar offset and posterior tibial slope on maximal flexion angle of the knee in posterior cruciate ligament sacrificing total knee arthroplasty[J]. Knee Surg Relat Res, 2013, 25(2): 54-59.
[13]
Shi XJ, Shen B, Kang PD, et al. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2013, 21(12): 2696-2703.
[14]
Bauer T, Biau D, Colmar M, et al. Influence of posterior condylar offset on knee flexion after cruciate-sacrificing mobile-bearing total knee replacement A prospective analysis of 410 consecutive cases[J]. Knee, 2010, 17(6): 375-380.
[15]
Singh G, Tan JH, Sng BY, et al. Restoring the anatomical tibial slope and limb axis may maximise post-operative flexion in posterior-stabilised total knee replacements[J]. Bone Joint J, 2013, 95-B(10): 1354-1358.
[16]
Ritter MA, Faris PM, Keating EM. Posterior cruciate ligament balancing during total knee arthroplasty[J]. J Arthroplasty, 1988, 3(4): 323-326.
[17]
Okazaki K, Tashiro Y, Mizu-Uchi H, et al. Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty[J]. Knee, 2014, 21(4): 806-809.
[18]
Banks SA, Harman MK, Hodge WA. Mechanism of anterior impingement damage in total knee arthroplasty[J]. J Bone Joint Surg Am, 2002, 84-A Suppl 2(2): 37-42.
[19]
Chambers AW, Wood AR, Kosmopoulos V, et al. Effect of posterior tibial slope on flexion and Anterior-Posterior tibial translation in posterior cruciate-retaining total knee arthroplasty[J]. J Arthroplasty, 2016, 31(1): 103-106.
[20]
Abdel MP, Pulido L, Severson EP, et al. Stepwise surgical correction of instability in flexion after total knee replacement[J]. Bone Joint J, 2014, 96B(12): 1644-1648.
[21]
王晓峰,陈百成,师晨霞,等.增加胫骨平台后倾角度、后交叉韧带部分松解对全膝关节置换术后膝关节运动影响的实验研究[J].中华外科杂志200745(12):839-842.
[22]
Nowakowski AM, Kamphausen M, Pagenstert G, et al. Influence of tibial slope on extension and flexion gaps in total knee arthroplasty: increasing the tibial slope affects both gaps[J]. Int Orthop, 2014, 38(10): 2071-2077.
[23]
Okamoto S, Mizu-Uchi H, Okazaki K, et al. Effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty[J]. J Arthroplasty, 2015, 30(8): 1439-1443.
[24]
Hamai S, Miura H, Higaki H, et al. Evaluation of impingement of the anterior tibial post during gait in a posteriorly stabilized total knee replacement[J]. J Bone Joint Surg Br, 2008, 90(9):1180-1185.
[25]
Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement[J]. J Bone Joint Surg Am, 1987, 69(3): 471-474.
[26]
Lee HY, Kim SJ, Kang KT, et al. The effect of tibial posterior slope on contact force and ligaments stresses in posterior-stabilized total knee arthroplasty-explicit finite element analysis[J]. Knee Surg Relat Res, 2012, 24(2): 91-98.
[27]
Kuriyama S, Ishikawa M, Nakamura S, et al. Posterior tibial slope and femoral sizing affect posterior cruciate ligament tension in posterior cruciate-retaining total knee arthroplasty[J]. Clin Biomech (Bristol, Avon), 2015, 30(7): 676-681.
[28]
Incavo SJ, Johnson CC, Beynnon BD, et al. Posterior cruciate ligament strain biomechanics in total knee arthroplasty[J]. Clin Orthop Relat Res, 1994, (39): 88-93.
[29]
Matziolis G, Mehlhorn S, Schattat N, et al. How much of the PCL is really preserved during the tibial cut?[J]. Knee Surg Sports Traumatol Arthrosc, 2012, 20(6): 1083-1086.
[30]
Çabuk H, I·mren Y, Tekin A, et al. High varus angle and lower posterior tibial slope associated with PCL injury in cruciate retaining total knee arthroplasty: an MRI study[J]. J Knee Surg, 2018, 31(3): 277-283.
[31]
Ostermeier S, Hurschler C, Windhagen H, et al. In vitro investigation of the influence of tibial slope on quadriceps extension force after total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2006, 14(10): 934-939.
[32]
Marra M, Strzelczak M, Heesterbeek P, et al. Anterior referencing of tibial slope in total knee arthroplasty considerably influences knee kinematics: a musculoskeletal simulation study[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(5): 1540-1548.
[33]
Song SJ, Bae DK, Kim KI, et al. Changes in femoral posterior condylar offset, tibial posterior slope angle, and joint line height after cruciate-retaining total knee arthroplasty[J]. Knee Surg Relat Res, 2016, 28(1): 27-33.
[34]
Han HS, Chang CB, Seong SC, et al. Evaluation of anatomic references for tibial sagittal alignment in total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2008, 16(4): 373-377.
[1] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[2] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[3] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[4] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[5] 孟繁宇, 周新社, 赵志, 裴立家, 刘犇. 侧位直接前方入路髋关节置换治疗偏瘫肢体股骨颈骨折[J]. 中华关节外科杂志(电子版), 2023, 17(06): 865-870.
[6] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[7] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[8] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[9] 李辉, 吴奇, 张子琦, 张晗, 王仿, 许鹏. 日间全膝关节置换术早期疗效及标准化流程探索[J]. 中华关节外科杂志(电子版), 2023, 17(06): 889-892.
[10] 金鑫, 谢卯, 刘芸, 杨操, 杨述华, 许伟华. 个性化股骨导向器辅助初次全髋关节置换的随机对照研究[J]. 中华关节外科杂志(电子版), 2023, 17(06): 780-787.
[11] 邓华梅, 袁札根, 曾德荣, 潘珊珊, 张葆青, 欧爱华, 曹学伟. 全膝关节置换术中气压止血带应用效果与影响因素分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 788-794.
[12] 刘瀚忠, 黄生辉, 万俊明, 李家春, 舒涛. 髌上入路和髌旁外侧入路髓内钉治疗胫骨骨折疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 795-801.
[13] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[14] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
[15] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
阅读次数
全文


摘要