切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (02) : 213 -218. doi: 10.3877/cma.j.issn.1674-134X.2022.02.012

综述

膝关节软骨修复的手术治疗现状及进展
吕晓雨1, 王铭1, 陈志安1, 冯玉娇1, 袁礼波2, 施荣茂2, 徐永清2, 谭洪波2,()   
  1. 1. 650000 昆明医科大学
    2. 650000 昆明,解放军联勤保障部队第九二〇医院骨科
  • 收稿日期:2021-06-01 出版日期:2022-04-01
  • 通信作者: 谭洪波
  • 基金资助:
    云南省卫健委临床中心建设重大项目(ZX20191001); 国家重点研发计划资助项目(2017YFC1103904); 军事应用研究项目(20XLS22)

Current status and progress of surgical treatment of knee cartilage repair

Xiaoyu Lyu1, Ming Wang1, Zhian Chen1, Yujiao Feng1, Libo Yuan2, Rongmao Shi2, Yongqing Xu2, Hongbo Tan2,()   

  1. 1. Kunming Medical University, Kunming 650000, China
    2. Department of Orthopedics, the 920th Hospital of Joint Logistics Support Force, Kunming 650000, China
  • Received:2021-06-01 Published:2022-04-01
  • Corresponding author: Hongbo Tan
引用本文:

吕晓雨, 王铭, 陈志安, 冯玉娇, 袁礼波, 施荣茂, 徐永清, 谭洪波. 膝关节软骨修复的手术治疗现状及进展[J]. 中华关节外科杂志(电子版), 2022, 16(02): 213-218.

Xiaoyu Lyu, Ming Wang, Zhian Chen, Yujiao Feng, Libo Yuan, Rongmao Shi, Yongqing Xu, Hongbo Tan. Current status and progress of surgical treatment of knee cartilage repair[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(02): 213-218.

膝关节软骨由软骨细胞以及包绕其周围的细胞外基质构成,是构成关节和维持关节活动功能的重要组成部分。膝关节软骨是一种无血管、无神经的组织,损伤后其自愈能力有限。然而,膝关节软骨损伤却十分常见,出现在60%以上的膝关节镜手术中。膝软骨损伤前期可无临床相关症状,有症状后可出现疼痛、肿胀,进而发展成为骨关节炎、关节僵硬,甚至残疾。目前,良好远期疗效的膝关节软骨损伤手术治疗技术对临床医生来说仍是一项挑战。文章旨在就膝关节软骨修复的手术治疗现状以及进展情况进行综述。

Knee cartilage is composed of chondrocytes and the surrounding extracellular matrix, which is an important part of joint formation and maintenance of joint function. Knee cartilage is a kind of tissue without blood vessel and nerve. Once injured, its self-healing ability is limited. However, cartilage damage in the knee joint is very common, occurring in more than 60% of arthroscopic knee surgeries.There may be no clinically relevant symptoms in the early stage of knee cartilage injury, but pain and swelling may appear after symptoms, and then develop into osteoarthritis, joint stiffness, and even disability. At present, it is still a challenge for clinicians to have a good long-term curative effect in the surgical treatment of knee cartilage injury. This article reviewed the current situation and progress of surgical treatment of knee cartilage repair.

[1]
Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies[J]. Knee, 2007, 14(3): 177-82.
[2]
Arøen A, Løken S, Heir S, et al. Articular cartilage lesions in 993 consecutive knee arthroscopies[J]. Am J Sports Med, 2004, 32(1): 211-215.
[3]
Heir S, Nerhus TK, Røtterud JH, et al. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery[J]. Am J Sports Med, 2010, 38(2): 231-237.
[4]
Davies RL, Kuiper NJ. Regenerative Medicine: a review of the evolution of autologous chondrocyte Implantation (ACI) therapy[J/OL]. Bioengineering (Basel), 2019, 6(1). DOI:10.3390/bioengineering6010022.
[5]
Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives[J]. J Orthop Translat, 2017, 9: 76-88. DOI: 10.1016/j.jot.2017.03.005.
[6]
Gersing AS, Schwaiger BJ, Nevitt MC, et al. Weight loss regimen in obese and overweight individuals is associated with reduced cartilage degeneration: 96-month data from the osteoarthritis initiative[J]. Osteoarthritis Cartilage, 2019, 27(6): 863-870.
[7]
Migliore A, Procopio S. Effectiveness and utility of hyaluronic acid in osteoarthritis[J]. Clin Cases Miner Bone Metab, 2015, 12(1): 31-33.
[8]
Merkely G, Ogura T, Ackermann J, et al. Clinical outcomes after revision of autologous chondrocyte implantation to osteochondral allograft transplantation for large chondral defects: a comparative matched-group analysis[J]. Cartilage, 2021, 12(2): 155-161.
[9]
Solheim E, Hegna J, Inderhaug E. Early determinants of long-term clinical outcome after cartilage repair surgery in the knee[J]. J Orthop, 2018, 15(1): 222-225.
[10]
Rodriguez-Merchan EC, Valentino LA. The role of gene therapy in cartilage repair[J]. Arch Bone Jt Surg, 2019, 7(2): 79-90.
[11]
Laupattarakasem W, Laopaiboon M, Laupattarakasem P, et al. Arthroscopic debridement for knee osteoarthritis[J/OL]. Cochrane Database Syst Rev, 2008(1): Cd005118. DOI: 10.1002/14651858.CD005118.pub2.
[12]
Scillia AJ, Aune KT, Andrachuk JS, et al. Return to play after chondroplasty of the knee in National Football League athletes[J]. Am J Sports Med, 2015, 43(3): 663-668.
[13]
Weiβenberger M, Heinz T, Boelch SP, et al. Is debridement beneficial for focal cartilage defects of the knee: data from the German Cartilage Registry (KnorpelRegister DGOU)[J]. Arch Orthop Trauma Surg, 2020, 140(3): 373-382.
[14]
Redondo ML, Beer AJ, Yanke AB. Cartilage restoration: microfracture and osteochondral autograft transplantation[J]. J Knee Surg, 2018, 31(3): 231-238.
[15]
Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(3): 670-706.
[16]
Mithoefer K, Mcadams T, Williams R J, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis[J]. Am J Sports Med, 2009, 37(10): 2053-2063.
[17]
Cole BJ, Farr J, Winalski CS, et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up[J]. Am J Sports Med, 2011, 39(6): 1170-1179.
[18]
Benthien JP, Behrens P. Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note[J]. Int Orthop, 2013, 37(11): 2139-2145.
[19]
Zedde P, Cudoni S, Giachetti G, et al. Subchondral bone remodeling: comparing nanofracture with microfracture. An ovine in vivo study[J]. Joints, 2016, 4(2): 87-93.
[20]
袁林,郭燕庆,于洪波,等. 富血小板血浆治疗Ⅱ-Ⅲ期膝骨关节炎的疗效评价[J/CD]. 中华关节外科杂志(电子版), 2016, 10(04): 386-392.
[21]
Koh YG, Kwon OR, Kim YS, et al. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial[J]. Arthroscopy, 2016, 32(1): 97-109.
[22]
Madry H, Gao L, Eichler H, et al. Bone marrow aspirate concentrate-enhanced marrow stimulation of chondral defects[J/OL]. Stem Cells Int, 2017, 2017: 1609685. DOI:10.1155/2017/1609685.
[23]
Richter DL, Schenck RC, Jr., Wascher DC, et al. Knee articular cartilage repair and restoration techniques: a review of the literature[J]. Sports Health, 2016, 8(2): 153-160.
[24]
Gudas R, Gudaite A, Pocius A, et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes[J]. Am J Sports Med, 2012, 40(11): 2499-508.
[25]
Armiento AR, Stoddart MJ, Alini M, et al. Biomaterials for articular cartilage tissue engineering: learning from biology[J/OL]. Acta Biomater, 2018, 65: 1-20. DOI: 10.1016/j.actbio.2017.11.021.
[26]
Murphy RT, Pennock AT, Bugbee WD. Osteochondral allograft transplantation of the knee in the pediatric and adolescent population[J]. Am J Sports Med, 2014, 42(3): 635-640.
[27]
Gross A E, Shasha N, Aubin P. Long-term followup of the use of fresh osteochondral allografts for posttraumatic knee defects[J]. Clin Orthop Relat Res, 2005, (435): 79-87.
[28]
Moradi B, Schönit E, Nierhoff C, et al. First-generation autologous chondrocyte implantation in patients with cartilage defects of the knee: 7 to 14 years′ clinical and magnetic resonance imaging follow-up evaluation[J]. Arthroscopy, 2012, 28(12): 1851-1861.
[29]
Ebert JR, Edwards PK. The evolution of progressive postoperative weight bearing after autologous chondrocyte implantation in the tibiofemoral joint[J]. J Sport Rehabil, 2014, 23(3): 192-202.
[30]
Bonasia DE, Marmotti A, Rosso F, et al. Use of chondral fragments for one stage cartilage repair: a systematic review[J]. World J Orthop, 2015, 6(11): 1006-1011.
[31]
Bonasia DE, Martin JA, Marmotti A, et al. The use of autologous adult, allogenic juvenile, and combined juvenile-adult cartilage fragments for the repair of chondral defects[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(12): 3988-3996.
[32]
Lee WS, Kim HJ, Kim KI, et al. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial[J]. Stem Cells Transl Med, 2019, 8(6): 504-511.
[33]
Huang BJ, Hu JC, Athanasiou A. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage[J/OL]. Biomaterials, 2016, 98: 1-22. DOI:10.1016/j.biomaterials.2016.04.018.
[34]
Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage[J]. Biomaterials, 2000, 21(5): 431-440.
[35]
Churchman SM, Boxall SA, McGonagle D, et al. Predicting the remaining lifespan and cultivation-related loss of osteogenic capacity of bone marrow multipotential stromal cells applicable across a broad donor age range[J/OL]. Stem Cells Int, 2017:10. DOI: 10.1155/2017/6129596.6129596.
[36]
Yang J, Zhang YS, Yue K, et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering[J/OL]. Acta Biomater, 2017, 57: 1-25. DOI: 10.1016/j.actbio.2017.01.036.
[37]
Li S, Glynne-Jones P, Andriotis OG, et al. Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering[J]. Lab Chip, 2014, 14(23): 4475-4485.
[38]
Shi S, Chan AG, Mercer S, et al. Endogenous versus exogenous growth factor regulation of articular chondrocytes[J]. J Orthop Res, 2014, 32(1): 54-60.
[39]
Bellavia D, Veronesi F, Carina V, et al. Gene therapy for chondral and osteochondral regeneration: is the future now?[J]. Cell Mol Life Sci, 2018, 75(4): 649-667.
[40]
Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage[J]. Curr Opin Pharmacol, 2018, 40: 59-66.
[41]
Evans CH, Ghivizzani SC, Robbins PD. Gene delivery to joints by intra-articular injection[J]. Hum Gene Ther, 2018, 29(1): 2-14.
[42]
Kim MK, Ha CW, In Y, et al. A multicenter, double-blind, phase III clinical trial to evaluate the efficacy and safety of a cell and gene therapy in knee osteoarthritis patients[J]. Hum Gene Ther Clin Dev, 2018, 29(1): 48-59.
[1] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[2] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 李辉, 吴奇, 张子琦, 张晗, 王仿, 许鹏. 日间全膝关节置换术早期疗效及标准化流程探索[J]. 中华关节外科杂志(电子版), 2023, 17(06): 889-892.
[5] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[6] 刘林峰, 王增涛, 王云鹏, 钟硕, 郝丽文, 仇申强, 陈超. 足底内侧皮瓣联合甲骨皮瓣在手指V度缺损再造中的临床应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 480-484.
[7] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[8] 张浩, 张万福, 韩飞, 佟琳, 王运帷, 李少辉, 陈阳, 曹鹏, 官浩. 游离组织瓣治疗无吻合血管或需困难吻合血管创面的临床进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 442-446.
[9] 李双喜, 胡宗凯, 赵静, 黄洁. 肝血管瘤治疗指征及治疗策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 504-510.
[10] 田驹, 孙伯洋, 杨荣华, 赵向前. 术中意外发现肝外胆管绒毛管状腺瘤的外科处理经验:附两例报道并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 567-571.
[11] 张天献, 吕云福, 郑进方. 胆总管结石微创治疗进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 585-588.
[12] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[13] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[14] 程相阵. 腹茧症9例诊治分析并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(9): 968-971.
[15] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
阅读次数
全文


摘要