切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (02) : 213 -218. doi: 10.3877/cma.j.issn.1674-134X.2022.02.012

综述

膝关节软骨修复的手术治疗现状及进展
吕晓雨1, 王铭1, 陈志安1, 冯玉娇1, 袁礼波2, 施荣茂2, 徐永清2, 谭洪波2,()   
  1. 1. 650000 昆明医科大学
    2. 650000 昆明,解放军联勤保障部队第九二〇医院骨科
  • 收稿日期:2021-06-01 出版日期:2022-04-01
  • 通信作者: 谭洪波
  • 基金资助:
    云南省卫健委临床中心建设重大项目(ZX20191001); 国家重点研发计划资助项目(2017YFC1103904); 军事应用研究项目(20XLS22)

Current status and progress of surgical treatment of knee cartilage repair

Xiaoyu Lyu1, Ming Wang1, Zhian Chen1, Yujiao Feng1, Libo Yuan2, Rongmao Shi2, Yongqing Xu2, Hongbo Tan2,()   

  1. 1. Kunming Medical University, Kunming 650000, China
    2. Department of Orthopedics, the 920th Hospital of Joint Logistics Support Force, Kunming 650000, China
  • Received:2021-06-01 Published:2022-04-01
  • Corresponding author: Hongbo Tan
引用本文:

吕晓雨, 王铭, 陈志安, 冯玉娇, 袁礼波, 施荣茂, 徐永清, 谭洪波. 膝关节软骨修复的手术治疗现状及进展[J/OL]. 中华关节外科杂志(电子版), 2022, 16(02): 213-218.

Xiaoyu Lyu, Ming Wang, Zhian Chen, Yujiao Feng, Libo Yuan, Rongmao Shi, Yongqing Xu, Hongbo Tan. Current status and progress of surgical treatment of knee cartilage repair[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(02): 213-218.

膝关节软骨由软骨细胞以及包绕其周围的细胞外基质构成,是构成关节和维持关节活动功能的重要组成部分。膝关节软骨是一种无血管、无神经的组织,损伤后其自愈能力有限。然而,膝关节软骨损伤却十分常见,出现在60%以上的膝关节镜手术中。膝软骨损伤前期可无临床相关症状,有症状后可出现疼痛、肿胀,进而发展成为骨关节炎、关节僵硬,甚至残疾。目前,良好远期疗效的膝关节软骨损伤手术治疗技术对临床医生来说仍是一项挑战。文章旨在就膝关节软骨修复的手术治疗现状以及进展情况进行综述。

Knee cartilage is composed of chondrocytes and the surrounding extracellular matrix, which is an important part of joint formation and maintenance of joint function. Knee cartilage is a kind of tissue without blood vessel and nerve. Once injured, its self-healing ability is limited. However, cartilage damage in the knee joint is very common, occurring in more than 60% of arthroscopic knee surgeries.There may be no clinically relevant symptoms in the early stage of knee cartilage injury, but pain and swelling may appear after symptoms, and then develop into osteoarthritis, joint stiffness, and even disability. At present, it is still a challenge for clinicians to have a good long-term curative effect in the surgical treatment of knee cartilage injury. This article reviewed the current situation and progress of surgical treatment of knee cartilage repair.

[1]
Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies[J]. Knee, 2007, 14(3): 177-82.
[2]
Arøen A, Løken S, Heir S, et al. Articular cartilage lesions in 993 consecutive knee arthroscopies[J]. Am J Sports Med, 2004, 32(1): 211-215.
[3]
Heir S, Nerhus TK, Røtterud JH, et al. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery[J]. Am J Sports Med, 2010, 38(2): 231-237.
[4]
Davies RL, Kuiper NJ. Regenerative Medicine: a review of the evolution of autologous chondrocyte Implantation (ACI) therapy[J/OL]. Bioengineering (Basel), 2019, 6(1). DOI:10.3390/bioengineering6010022.
[5]
Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives[J]. J Orthop Translat, 2017, 9: 76-88. DOI: 10.1016/j.jot.2017.03.005.
[6]
Gersing AS, Schwaiger BJ, Nevitt MC, et al. Weight loss regimen in obese and overweight individuals is associated with reduced cartilage degeneration: 96-month data from the osteoarthritis initiative[J]. Osteoarthritis Cartilage, 2019, 27(6): 863-870.
[7]
Migliore A, Procopio S. Effectiveness and utility of hyaluronic acid in osteoarthritis[J]. Clin Cases Miner Bone Metab, 2015, 12(1): 31-33.
[8]
Merkely G, Ogura T, Ackermann J, et al. Clinical outcomes after revision of autologous chondrocyte implantation to osteochondral allograft transplantation for large chondral defects: a comparative matched-group analysis[J]. Cartilage, 2021, 12(2): 155-161.
[9]
Solheim E, Hegna J, Inderhaug E. Early determinants of long-term clinical outcome after cartilage repair surgery in the knee[J]. J Orthop, 2018, 15(1): 222-225.
[10]
Rodriguez-Merchan EC, Valentino LA. The role of gene therapy in cartilage repair[J]. Arch Bone Jt Surg, 2019, 7(2): 79-90.
[11]
Laupattarakasem W, Laopaiboon M, Laupattarakasem P, et al. Arthroscopic debridement for knee osteoarthritis[J/OL]. Cochrane Database Syst Rev, 2008(1): Cd005118. DOI: 10.1002/14651858.CD005118.pub2.
[12]
Scillia AJ, Aune KT, Andrachuk JS, et al. Return to play after chondroplasty of the knee in National Football League athletes[J]. Am J Sports Med, 2015, 43(3): 663-668.
[13]
Weiβenberger M, Heinz T, Boelch SP, et al. Is debridement beneficial for focal cartilage defects of the knee: data from the German Cartilage Registry (KnorpelRegister DGOU)[J]. Arch Orthop Trauma Surg, 2020, 140(3): 373-382.
[14]
Redondo ML, Beer AJ, Yanke AB. Cartilage restoration: microfracture and osteochondral autograft transplantation[J]. J Knee Surg, 2018, 31(3): 231-238.
[15]
Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(3): 670-706.
[16]
Mithoefer K, Mcadams T, Williams R J, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis[J]. Am J Sports Med, 2009, 37(10): 2053-2063.
[17]
Cole BJ, Farr J, Winalski CS, et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up[J]. Am J Sports Med, 2011, 39(6): 1170-1179.
[18]
Benthien JP, Behrens P. Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note[J]. Int Orthop, 2013, 37(11): 2139-2145.
[19]
Zedde P, Cudoni S, Giachetti G, et al. Subchondral bone remodeling: comparing nanofracture with microfracture. An ovine in vivo study[J]. Joints, 2016, 4(2): 87-93.
[20]
袁林,郭燕庆,于洪波,等. 富血小板血浆治疗Ⅱ-Ⅲ期膝骨关节炎的疗效评价[J/CD]. 中华关节外科杂志(电子版), 2016, 10(04): 386-392.
[21]
Koh YG, Kwon OR, Kim YS, et al. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial[J]. Arthroscopy, 2016, 32(1): 97-109.
[22]
Madry H, Gao L, Eichler H, et al. Bone marrow aspirate concentrate-enhanced marrow stimulation of chondral defects[J/OL]. Stem Cells Int, 2017, 2017: 1609685. DOI:10.1155/2017/1609685.
[23]
Richter DL, Schenck RC, Jr., Wascher DC, et al. Knee articular cartilage repair and restoration techniques: a review of the literature[J]. Sports Health, 2016, 8(2): 153-160.
[24]
Gudas R, Gudaite A, Pocius A, et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes[J]. Am J Sports Med, 2012, 40(11): 2499-508.
[25]
Armiento AR, Stoddart MJ, Alini M, et al. Biomaterials for articular cartilage tissue engineering: learning from biology[J/OL]. Acta Biomater, 2018, 65: 1-20. DOI: 10.1016/j.actbio.2017.11.021.
[26]
Murphy RT, Pennock AT, Bugbee WD. Osteochondral allograft transplantation of the knee in the pediatric and adolescent population[J]. Am J Sports Med, 2014, 42(3): 635-640.
[27]
Gross A E, Shasha N, Aubin P. Long-term followup of the use of fresh osteochondral allografts for posttraumatic knee defects[J]. Clin Orthop Relat Res, 2005, (435): 79-87.
[28]
Moradi B, Schönit E, Nierhoff C, et al. First-generation autologous chondrocyte implantation in patients with cartilage defects of the knee: 7 to 14 years′ clinical and magnetic resonance imaging follow-up evaluation[J]. Arthroscopy, 2012, 28(12): 1851-1861.
[29]
Ebert JR, Edwards PK. The evolution of progressive postoperative weight bearing after autologous chondrocyte implantation in the tibiofemoral joint[J]. J Sport Rehabil, 2014, 23(3): 192-202.
[30]
Bonasia DE, Marmotti A, Rosso F, et al. Use of chondral fragments for one stage cartilage repair: a systematic review[J]. World J Orthop, 2015, 6(11): 1006-1011.
[31]
Bonasia DE, Martin JA, Marmotti A, et al. The use of autologous adult, allogenic juvenile, and combined juvenile-adult cartilage fragments for the repair of chondral defects[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(12): 3988-3996.
[32]
Lee WS, Kim HJ, Kim KI, et al. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial[J]. Stem Cells Transl Med, 2019, 8(6): 504-511.
[33]
Huang BJ, Hu JC, Athanasiou A. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage[J/OL]. Biomaterials, 2016, 98: 1-22. DOI:10.1016/j.biomaterials.2016.04.018.
[34]
Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage[J]. Biomaterials, 2000, 21(5): 431-440.
[35]
Churchman SM, Boxall SA, McGonagle D, et al. Predicting the remaining lifespan and cultivation-related loss of osteogenic capacity of bone marrow multipotential stromal cells applicable across a broad donor age range[J/OL]. Stem Cells Int, 2017:10. DOI: 10.1155/2017/6129596.6129596.
[36]
Yang J, Zhang YS, Yue K, et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering[J/OL]. Acta Biomater, 2017, 57: 1-25. DOI: 10.1016/j.actbio.2017.01.036.
[37]
Li S, Glynne-Jones P, Andriotis OG, et al. Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering[J]. Lab Chip, 2014, 14(23): 4475-4485.
[38]
Shi S, Chan AG, Mercer S, et al. Endogenous versus exogenous growth factor regulation of articular chondrocytes[J]. J Orthop Res, 2014, 32(1): 54-60.
[39]
Bellavia D, Veronesi F, Carina V, et al. Gene therapy for chondral and osteochondral regeneration: is the future now?[J]. Cell Mol Life Sci, 2018, 75(4): 649-667.
[40]
Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage[J]. Curr Opin Pharmacol, 2018, 40: 59-66.
[41]
Evans CH, Ghivizzani SC, Robbins PD. Gene delivery to joints by intra-articular injection[J]. Hum Gene Ther, 2018, 29(1): 2-14.
[42]
Kim MK, Ha CW, In Y, et al. A multicenter, double-blind, phase III clinical trial to evaluate the efficacy and safety of a cell and gene therapy in knee osteoarthritis patients[J]. Hum Gene Ther Clin Dev, 2018, 29(1): 48-59.
[1] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[2] 梁晓宗, 江吉勇, 李曼丹, 林海彬, 王昌义. 阔筋膜游离股前外侧穿支皮瓣修复足踝组织缺损[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 672-675.
[3] 李友, 唐林峰, 杜伟伟, 刘海亮, 余新水, 沈佳宇, 巨积辉. 皮瓣联合掌长肌腱折叠单排三点式固定治疗指背侧创面伴锤状指畸形的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 485-490.
[4] 王强, 金光哲, 巨积辉, 王凯, 唐晓强, 吕文涛, 程贺云, 杨林, 王海龙. 超声辅助定位下游离臂内侧皮瓣在修复手指创面中的临床应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 393-397.
[5] 刘敏, 唐恩溢, 刘喆, 葛苏蒙, 刘梅, 孙国文. 计算机导航技术在口腔颌面部微小异物取出手术中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 375-379.
[6] 孙莲, 马红萍, 吴文英. 局部进展期甲状腺癌患者外科处理[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 112-114.
[7] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[8] 刘卓, 张宗明, 张翀, 刘立民, 赵月, 齐晖. 腹腔镜手术治疗高龄急性梗阻性化脓性胆管炎患者的安全性与术式选择[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 795-800.
[9] 陈宗杰, 胡添松. 肝外伤破裂患者治疗后胆漏发生影响因素分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 836-840.
[10] 王妍, 李征, 卓奇峰, 周陈杰, 吉顺荣, 徐晓武, 陈洁, 虞先濬. 微小无功能性胰腺神经内分泌瘤外科治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 607-614.
[11] 雷永琪, 刘新阳, 杨黎渝, 铁学宏, 俞星新, 耿志达, 刘雨, 陈政良, 惠鹏, 梁英健. 肝脏血管周上皮样细胞肿瘤合并贫血一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 710-718.
[12] 李宜璐, 曹永丽, 杨阳, 王思远, 张远耀, 杨维维, 王信琛, 陈俊, 魏东. 腹腔镜盆底修复联合PPH 术治疗直肠内脱垂的手术疗效观察[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 394-401.
[13] 芦煜, 李振宇, 吴承东, 周仲伍. 肛周子宫内膜异位症一例报告[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 431-434.
[14] 宋庆成, 郑占乐, 王天瑞, 王宇钏, 张凯旋, 纳静, 蔚佳昊, 杨思繁, 宋九宏, 张英泽. “人老膝不老”:膝关节健康管理的全方位探索与实践[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 321-324.
[15] 郑占乐, 王宇钏, 蔚佳昊, 宋庆成, 张凯旋, 纳静, 王天瑞, 宋九宏, 张英泽, 王娟. 保膝须“开膝”——“开膝”在膝骨关节炎中的临床应用价值[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 325-330.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?