切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 86 -92. doi: 10.3877/cma.j.issn.1674-134X.2022.01.014

综述

胫骨高位截骨联合软骨修复治疗膝骨关节炎研究进展
刘欣1, 刘琮1, 鲍亮1, 陈志刚1, 李博1, 吴廷瑞1, 薛欣1, 周鹏飞1, 周涛1, 朱鹏1, 张兵1,()   
  1. 1. 710038 西安医学院第二附属医院
  • 收稿日期:2020-10-28 出版日期:2022-02-01
  • 通信作者: 张兵

Research progress in treatment of knee osteoarthritis by high tibial osteotomy combined with cartilage repair technique

Xin Liu1, Cong Liu1, Liang Bao1, Zhigang Chen1, Bo Li1, Tingrui Wu1, Xin Xue1, Pengfei Zhou1, Tao Zhou1, Peng Zhu1, Bing Zhang1,()   

  1. 1. The second Affiliated Hospital of Xi 'an Medical College, Xi’an 710038, China
  • Received:2020-10-28 Published:2022-02-01
  • Corresponding author: Bing Zhang
引用本文:

刘欣, 刘琮, 鲍亮, 陈志刚, 李博, 吴廷瑞, 薛欣, 周鹏飞, 周涛, 朱鹏, 张兵. 胫骨高位截骨联合软骨修复治疗膝骨关节炎研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 86-92.

Xin Liu, Cong Liu, Liang Bao, Zhigang Chen, Bo Li, Tingrui Wu, Xin Xue, Pengfei Zhou, Tao Zhou, Peng Zhu, Bing Zhang. Research progress in treatment of knee osteoarthritis by high tibial osteotomy combined with cartilage repair technique[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(01): 86-92.

开放楔形胫骨高位截骨术可矫正胫骨近端内翻畸形,改变膝关节轴向应力的分布,有效缓解膝关节内侧疼痛,但由于术后关节软骨修复不理想,远期疗效不确切。将胫骨高位截骨术与软骨修复技术相结合,可以进一步改善关节软骨的修复和再生效果,有效提高患者的膝关节功能及生活质量。本综述就胫骨高位截骨联合软骨修复技术的应用及研究现状展开综述,探讨各类优缺点,以期为临床治疗提供建议及选择。

Open wedge high tibial osteotomy can correct proximal tibial varus deformity, change the axial stress distribution of the knee joint, relieve knee medial pain. But because of the postoperative articular cartilage repairation is not ideal, and the long-term curative effect is not exact. High tibial osteotomy combined with cartilage repair technology will improve the articular cartilage repairation and regeneration further, improve the patient's knee joint function and quality of life effectively. In this review, the application and research status of high tibial osteotomy combined with cartilage repair technology were reviewed, and various advantages and disadvantages were discussed in order to provide suggestions and choices for clinical treatment.

[1]
Briem K, Ramsey DK, Newcomb W, et al. Effects of the amount of valgus correction for medial compartment knee osteoarthritis on clinical outcome, knee kinetics and muscle co-contraction after opening wedge high tibial osteotomy[J]. J Orthop Res, 2007, 25(3): 311-318.
[2]
Prodromos CC, Andriacchi TP, Galante JO. A relationship between gait and clinical changes following high tibial osteotomy[J]. J Bone Joint Surg Am, 1985, 67(8): 1188-1194.
[3]
Gaasbeek RD, Nicolaas L, Rijnberg WJ, et al. Correction accuracy and collateral laxity in open versus closed wedge high tibial osteotomy. A one-year randomised controlled study[J]. Int Orthop, 2010, 34(2): 201-207.
[4]
Hernigou P, Medevielle D, Debeyre J, et al. Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study[J]. J Bone Joint Surg Am, 1987, 69(3): 332-354.
[5]
Koshino T, Murase T, Saito T. Medial opening-wedge high tibial osteotomy with use of porous hydroxyapatite to treat medial compartment osteoarthritis of the knee[J]. J Bone Joint Surg Am, 2003, 85A(1): 78-85.
[6]
Maurer F. Wassmer G.high tibial osteotomy:does navigation improve results?[J]. Orthopedics, 2006, 29(10 Suppl): S130-S132.
[7]
Agneskirchner JD, Hurschler C, Wrann CD, et al. The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study[J]. Arthroscopy, 2007, 23(8): 852-861.
[8]
Amendola A, Bonasia DE. Results of high tibial osteotomy: review of the literature[J]. Int Orthop, 2010, 34(2, SI): 155-160.
[9]
Laprade RF, Spiridonov SI, Nystrom LM, et al. Prospective outcomes of young and middle-aged adults with medial compartment osteoarthritis treated with a proximal tibial opening wedge osteotomy[J]. Arthroscopy, 2012, 28(3): 354-364.
[10]
Sterett WI, Steadman JR, Huang MJ, et al. Chondral resurfacing and high tibial osteotomy in the varus knee: survivorship analysis[J]. Am J Sports Med, 2010, 38(7): 1420-1424.
[11]
Salzmann GM, Ahrens P, Naal FD, et al. Sporting activity after high tibial osteotomy for the treatment of medial compartment knee osteoarthritis[J]. Am J Sports Med, 2009, 37(2): 312-318.
[12]
Schuster P, Geβlein M, Schlumberger M, et al. Ten-year results of medial open-wedge high tibial osteotomy and chondral resurfacing in severe medial osteoarthritis and varus malalignment[J]. Am J Sports Med, 2018, 46(6): 1362-1370.
[13]
Tsukada S, Wakui M. Is overcorrection preferable for repair of degenerated articular cartilage after open-wedge high tibial osteotomy?[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(3): 785-792.
[14]
Akizuki S, Yasukawa Y, Takizawa T. Does arthroscopic abrasion arthroplasty promote cartilage regeneration in osteoarthritic knees with eburnation? A prospective study of high tibial osteotomy with abrasion arthroplasty versus high tibial osteotomy alone[J]. Arthroscopy, 1997, 13(1): 9-17.
[15]
Koh YG, Kwon OR, Kim YS, et al. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: a prospective study[J]. Arthroscopy, 2014, 30(11): 1453-1460.
[16]
Wong KL, Lee KB, Tai BC, et al. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years' follow-up[J]. Arthroscopy, 2013, 29(12): 2020-2028.
[17]
Matsunaga D, Akizuki S, Takizawa T, et al. Repair of articular cartilage and clinical outcome after osteotomy with microfracture or abrasion arthroplasty for medial gonarthrosis[J]. Knee, 2007, 14(6): 465-471.
[18]
Franceschi F, Longo UG, Ruzzini L, et al. Simultaneous arthroscopic implantation of autologous chondrocytes and high tibial osteotomy for tibial chondral defects in the varus knee[J]. Knee, 2008, 15(4): 309-313.
[19]
Steadman JR, Briggs KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up[J]. Arthroscopy, 2003, 19(5): 477-484.
[20]
Pässler HH. Microfracture for treatment of cartilage detects[J]. Zentralbl Chir, 2000, 125(6): 500-504.
[21]
Mithoefer K, Williams RJ, Warren RF, et al. Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique[J]. J Bone Joint Surg Am, 2006, 88(Suppl 1 Pt 2): 294-304.
[22]
Bae DK, Yoon KH, Song SJ. Cartilage healing after microfracture in osteoarthritic knees[J]. Arthroscopy, 2006, 22(4): 367-374.
[23]
Mccormick F, Yanke A, Provencher MT, et al. Minced articular cartilage--basic science, surgical technique, and clinical application[J]. Sports Med Arthrosc Rev, 2008, 16(4): 217-220.
[24]
Lacci KM, Dardik A. Platelet-rich plasma: support for its use in wound healing[J]. Yale J Biol Med, 2010, 83(1): 1-9.
[25]
Kon E, Buda R, Filardo G, et al. Platelet-rich plasma: intra-articular knee injections produced favorable results on degenerative cartilage lesions[J]. Knee Surg Sports Traumatol Arthrosc, 2010, 18(4): 472-479.
[26]
Spakova T, Rosocha J, Lacko M, et al. Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid[J]. Am J Phys Med Rehabil, 2012, 91(5): 411-417.
[27]
张英杰,王上增,程韶,等.富血小板血浆联合双平面楔形开放截骨术对前内侧磨损膝关节软骨的修复作用[J].实用医学杂志,201935(20): 3154-3158.
[28]
颜飞华,韩素英,徐志勇,等.胫骨高位截骨术联合富血小板血浆治疗膝骨关节炎70例[J].中国中医骨伤科杂志,202028(6): 52-55.
[29]
Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair[J]. Nat Rev Rheumatol, 2013, 9(10): 584-594.
[30]
Oreffo RO, Cooper C, Mason C, et al. Mesenchymal stem cells: lineage, plasticity, and skeletal therapeutic potential[J]. Stem Cell Rev, 2005, 1(2): 169-178.
[31]
Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial[J]. Stem Cells, 2014, 32(5): 1254-1266.
[32]
Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis[J]. Knee, 2012, 19(6): 902-907.
[33]
Koh YG, Jo SB, Kwon OR, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis[J]. Arthroscopy, 2013, 29(4): 748-755.
[34]
Saw KY, Anz A, Jee CS, et al. High tibial osteotomy in combination with chondrogenesis after stem cell therapy: a histologic report of 8 cases[J]. Arthroscopy, 2015, 31(10): 1909-1920.
[35]
Kim YS, Koh YG. Comparative matched-pair analysis of open-wedge high tibial osteotomy with versus without an injection of adipose-derived mesenchymal stem cells for varus knee osteoarthritis: clinical and second-look arthroscopic results[J]. Am J Sports Med, 2018, 46(11): 2669-2677.
[36]
Xiang YC, Bunpetch V, Zhou WY, et al. Optimization strategies for ACI: a step-chronicle review[J]. J Orthop Translat, 2019, 17(SI): 3-14.
[37]
Davies RL, Kuiper NJ. Regenerative medicine: a review of the evolution of autologous chondrocyte implantation (ACI) therapy[J/OL]. Bioengineering (Basel), 2019, 6(1): 22. DOI: 10.3390/bioengineering6010022.
[38]
Jones KJ, Cash BM. Matrix-Induced autologous chondrocyte implantation with autologous bone grafting for osteochondral lesions of the femoral trochlea[J]. Arthrosc Tech, 2019, 8(3): e259-e266.
[39]
Welch T, Mandelbaum B, Tom M. Autologous chondrocyte implantation: past, present, and future[J]. Sports Med Arthrosc Rev, 2016, 24(2): 85-91.
[40]
Ogura T, Merkely G, Bryant T, et al. Autologous chondrocyte implantation " segmental-sandwich" technique for deep osteochondral defects in the knee: clinical outcomes and correlation with magnetic resonance imaging findings[J/OL]. Orthop J Sports Med, 2019, 7(5): 2325967119847173. DOI: 10.1177/2325967119847173.
[41]
Olivos MA, Cortés GS, Ferniza GJ, et al. Arthroscopic treatment of patellar and trochlear cartilage lesions with matrix encapsulated chondrocyte implantation versus microfracture: quantitative assessment with MRI T2-mapping and MOCART at 4-year follow-up[J]. Cartilage, 2021, 12(3): 320-332.
[42]
Knutsen G, Drogset JO, Engebretsen L, et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years[J]. J Bone Joint Surg Am, 2016, 98(16): 1332-1339.
[43]
Kraeutler MJ, Belk JW, Purcell JM. Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee a systematic review of 5-year outcomes[J]. Am J Sports Med, 2018, 46(4): 995-999.
[44]
Bode G, Ogon P, Pestka J, et al. Clinical outcome and return to work following single-stage combined autologous chondrocyte implantation and high tibial osteotomy[J]. Int Orthop, 2015, 39(4): 689-696.
[45]
Che JZ. Application of tissue-engineered cartilage with BMP-7 gene to repair knee joint cartilage injury in rabbits[J]. Knee Surg Sport Traumatol Arthrosc, 2010, 18(4): 496-503.
[46]
Richter DL, Tanksley JA, Miller MD. Osteochondral autograft transplantation: a review of the surgical technique and outcomes[J]. Sports Med Arthrosc Rev, 2016, 24(2): 74-78.
[47]
Richter DL, Schenck RC, Wascher DC, et al. Knee articular cartilage repair and restoration techniques: a review of the literature[J]. Sports Health, 2016, 8(2): 153-160.
[48]
Kumagai K, Akamatsu Y, Kobayashi H, et al. Mosaic osteochondral autograft transplantation versus bone marrow stimulation technique as a concomitant procedure with opening-wedge high tibial osteotomy for spontaneous osteonecrosis of the medial femoral condyle[J]. Arthroscopy, 2018, 34(1): 233-240.
[49]
Minzlaff P, Feucht MJ, Saier T, et al. Osteochondral autologous transfer combined with valgus high tibial osteotomy: long-term results and survivorship analysis[J]. Am J Sports Med, 2013, 41(10): 2325-2332.
[50]
Hishimura R, Onodera T, Hontani KA, et al. Osteochondral autograft transplantation technique augmented by an ultrapurified alginate gel enhances osteochondral repair in a rabbit model[J]. Am J Sports Med, 2019, 47(2): 468-478.
[51]
Chahla J, Sweet MC, Okoroha KR, et al. Osteochondral allograft transplantation in the patellofemoral joint: a systematic review[J]. Am J Sports Med, 2019, 47(12): 3009-3018.
[52]
Bhardwaj N, Devi D, Mandal BB. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors[J]. Macromol Biosci, 2015, 15(2): 153-182.
[53]
Fisher MH. Cartilage repair and subchondral bone remodeling in response to focal lesions in a mini-pig model:implications for tissue engineering[J]. Tissue Eng Part A, 2015, 21(3/4): 850-860.
[54]
He A, Liu L, Luo X, et al. Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model[J]. Sci Rep, 2017, 7(2): 404-416.
[55]
Goldberg AJ. The use of mesenchymal stem cells for cartilage repair and regeneration:a systematic review[J]. J Orthop Surg Res, 2017, 12(1): 39-68.
[56]
Liao JQ. Recent developments in Scaffold-Guided cartilage tissue regeneration[J]. J Biomed Nanotechnol, 2014, 10(10): 3085-3104.
[57]
Bonani W, Singhatanadgige W, Pornanong A, et al. Natural origin materials for osteochondral tissue engineering[J]. Adv Exp Med Biol, 2018, 10(58): 3-30.
[58]
Sawatjui N, Damrongrungruang T, Leeanansaksiri W, et al. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells[J]. Mater Sci Eng C Mater Biol Appl, 2015, 5(2): 90-96.
[59]
Iulian A, Dan L, Camelia T, et al. Synthetic materials for osteochondral tissue engineering[J]. Adv Exp Med Biol, 2018, 10 (58): 31-52.
[60]
Giretova M, Medvecky L, Petrovova E, et al. Polyhydroxybutyrate/chitosan 3D scaffolds promote in vitro and in vivo chondrogenesis[J]. Appl Biochem Biotechnol, 2019, 189(2): 556-575.
[61]
Kim YS, Chung PK, Suh DS, et al. Implantation of mesenchymal stem cells in combination with allogenic cartilage improves cartilage regeneration and clinical outcomes in patients with concomitant high tibial osteotomy[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(2): 544-554.
[62]
Kim MS, Koh IJ, Choi YJ, et al. Collagen augmentation improves the quality of cartilage repair after microfracture in patients undergoing high tibial osteotomy: a randomized controlled trial[J]. Am J Sports Med, 2017, 45(8): 1845-1855.
[1] 邓华梅, 袁札根, 曾德荣, 潘珊珊, 张葆青, 欧爱华, 曹学伟. 全膝关节置换术中气压止血带应用效果与影响因素分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 788-794.
[2] 刘瀚忠, 黄生辉, 万俊明, 李家春, 舒涛. 髌上入路和髌旁外侧入路髓内钉治疗胫骨骨折疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 795-801.
[3] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[4] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[5] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[6] 黄子荣, 罗渝鑫, 杨文瀚, 陈小虎, 谢环宇, 朱伟民. 前交叉韧带重建对膝关节稳定性影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 847-854.
[7] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[8] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[9] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[10] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[11] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[12] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[13] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[14] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
[15] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
阅读次数
全文


摘要