[1] |
Briem K, Ramsey DK, Newcomb W, et al. Effects of the amount of valgus correction for medial compartment knee osteoarthritis on clinical outcome, knee kinetics and muscle co-contraction after opening wedge high tibial osteotomy[J]. J Orthop Res, 2007, 25(3): 311-318.
|
[2] |
Prodromos CC, Andriacchi TP, Galante JO. A relationship between gait and clinical changes following high tibial osteotomy[J]. J Bone Joint Surg Am, 1985, 67(8): 1188-1194.
|
[3] |
Gaasbeek RD, Nicolaas L, Rijnberg WJ, et al. Correction accuracy and collateral laxity in open versus closed wedge high tibial osteotomy. A one-year randomised controlled study[J]. Int Orthop, 2010, 34(2): 201-207.
|
[4] |
Hernigou P, Medevielle D, Debeyre J, et al. Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study[J]. J Bone Joint Surg Am, 1987, 69(3): 332-354.
|
[5] |
Koshino T, Murase T, Saito T. Medial opening-wedge high tibial osteotomy with use of porous hydroxyapatite to treat medial compartment osteoarthritis of the knee[J]. J Bone Joint Surg Am, 2003, 85A(1): 78-85.
|
[6] |
Maurer F. Wassmer G.high tibial osteotomy:does navigation improve results?[J]. Orthopedics, 2006, 29(10 Suppl): S130-S132.
|
[7] |
Agneskirchner JD, Hurschler C, Wrann CD, et al. The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study[J]. Arthroscopy, 2007, 23(8): 852-861.
|
[8] |
Amendola A, Bonasia DE. Results of high tibial osteotomy: review of the literature[J]. Int Orthop, 2010, 34(2, SI): 155-160.
|
[9] |
Laprade RF, Spiridonov SI, Nystrom LM, et al. Prospective outcomes of young and middle-aged adults with medial compartment osteoarthritis treated with a proximal tibial opening wedge osteotomy[J]. Arthroscopy, 2012, 28(3): 354-364.
|
[10] |
Sterett WI, Steadman JR, Huang MJ, et al. Chondral resurfacing and high tibial osteotomy in the varus knee: survivorship analysis[J]. Am J Sports Med, 2010, 38(7): 1420-1424.
|
[11] |
Salzmann GM, Ahrens P, Naal FD, et al. Sporting activity after high tibial osteotomy for the treatment of medial compartment knee osteoarthritis[J]. Am J Sports Med, 2009, 37(2): 312-318.
|
[12] |
Schuster P, Geβlein M, Schlumberger M, et al. Ten-year results of medial open-wedge high tibial osteotomy and chondral resurfacing in severe medial osteoarthritis and varus malalignment[J]. Am J Sports Med, 2018, 46(6): 1362-1370.
|
[13] |
Tsukada S, Wakui M. Is overcorrection preferable for repair of degenerated articular cartilage after open-wedge high tibial osteotomy?[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(3): 785-792.
|
[14] |
Akizuki S, Yasukawa Y, Takizawa T. Does arthroscopic abrasion arthroplasty promote cartilage regeneration in osteoarthritic knees with eburnation? A prospective study of high tibial osteotomy with abrasion arthroplasty versus high tibial osteotomy alone[J]. Arthroscopy, 1997, 13(1): 9-17.
|
[15] |
Koh YG, Kwon OR, Kim YS, et al. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: a prospective study[J]. Arthroscopy, 2014, 30(11): 1453-1460.
|
[16] |
Wong KL, Lee KB, Tai BC, et al. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years' follow-up[J]. Arthroscopy, 2013, 29(12): 2020-2028.
|
[17] |
Matsunaga D, Akizuki S, Takizawa T, et al. Repair of articular cartilage and clinical outcome after osteotomy with microfracture or abrasion arthroplasty for medial gonarthrosis[J]. Knee, 2007, 14(6): 465-471.
|
[18] |
Franceschi F, Longo UG, Ruzzini L, et al. Simultaneous arthroscopic implantation of autologous chondrocytes and high tibial osteotomy for tibial chondral defects in the varus knee[J]. Knee, 2008, 15(4): 309-313.
|
[19] |
Steadman JR, Briggs KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up[J]. Arthroscopy, 2003, 19(5): 477-484.
|
[20] |
Pässler HH. Microfracture for treatment of cartilage detects[J]. Zentralbl Chir, 2000, 125(6): 500-504.
|
[21] |
Mithoefer K, Williams RJ, Warren RF, et al. Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique[J]. J Bone Joint Surg Am, 2006, 88(Suppl 1 Pt 2): 294-304.
|
[22] |
Bae DK, Yoon KH, Song SJ. Cartilage healing after microfracture in osteoarthritic knees[J]. Arthroscopy, 2006, 22(4): 367-374.
|
[23] |
Mccormick F, Yanke A, Provencher MT, et al. Minced articular cartilage--basic science, surgical technique, and clinical application[J]. Sports Med Arthrosc Rev, 2008, 16(4): 217-220.
|
[24] |
Lacci KM, Dardik A. Platelet-rich plasma: support for its use in wound healing[J]. Yale J Biol Med, 2010, 83(1): 1-9.
|
[25] |
Kon E, Buda R, Filardo G, et al. Platelet-rich plasma: intra-articular knee injections produced favorable results on degenerative cartilage lesions[J]. Knee Surg Sports Traumatol Arthrosc, 2010, 18(4): 472-479.
|
[26] |
Spakova T, Rosocha J, Lacko M, et al. Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid[J]. Am J Phys Med Rehabil, 2012, 91(5): 411-417.
|
[27] |
张英杰,王上增,程韶,等.富血小板血浆联合双平面楔形开放截骨术对前内侧磨损膝关节软骨的修复作用[J].实用医学杂志,2019,35(20): 3154-3158.
|
[28] |
颜飞华,韩素英,徐志勇,等.胫骨高位截骨术联合富血小板血浆治疗膝骨关节炎70例[J].中国中医骨伤科杂志,2020,28(6): 52-55.
|
[29] |
Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair[J]. Nat Rev Rheumatol, 2013, 9(10): 584-594.
|
[30] |
Oreffo RO, Cooper C, Mason C, et al. Mesenchymal stem cells: lineage, plasticity, and skeletal therapeutic potential[J]. Stem Cell Rev, 2005, 1(2): 169-178.
|
[31] |
Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial[J]. Stem Cells, 2014, 32(5): 1254-1266.
|
[32] |
Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis[J]. Knee, 2012, 19(6): 902-907.
|
[33] |
Koh YG, Jo SB, Kwon OR, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis[J]. Arthroscopy, 2013, 29(4): 748-755.
|
[34] |
Saw KY, Anz A, Jee CS, et al. High tibial osteotomy in combination with chondrogenesis after stem cell therapy: a histologic report of 8 cases[J]. Arthroscopy, 2015, 31(10): 1909-1920.
|
[35] |
Kim YS, Koh YG. Comparative matched-pair analysis of open-wedge high tibial osteotomy with versus without an injection of adipose-derived mesenchymal stem cells for varus knee osteoarthritis: clinical and second-look arthroscopic results[J]. Am J Sports Med, 2018, 46(11): 2669-2677.
|
[36] |
Xiang YC, Bunpetch V, Zhou WY, et al. Optimization strategies for ACI: a step-chronicle review[J]. J Orthop Translat, 2019, 17(SI): 3-14.
|
[37] |
Davies RL, Kuiper NJ. Regenerative medicine: a review of the evolution of autologous chondrocyte implantation (ACI) therapy[J/OL]. Bioengineering (Basel), 2019, 6(1): 22. DOI: 10.3390/bioengineering6010022.
|
[38] |
Jones KJ, Cash BM. Matrix-Induced autologous chondrocyte implantation with autologous bone grafting for osteochondral lesions of the femoral trochlea[J]. Arthrosc Tech, 2019, 8(3): e259-e266.
|
[39] |
Welch T, Mandelbaum B, Tom M. Autologous chondrocyte implantation: past, present, and future[J]. Sports Med Arthrosc Rev, 2016, 24(2): 85-91.
|
[40] |
Ogura T, Merkely G, Bryant T, et al. Autologous chondrocyte implantation " segmental-sandwich" technique for deep osteochondral defects in the knee: clinical outcomes and correlation with magnetic resonance imaging findings[J/OL]. Orthop J Sports Med, 2019, 7(5): 2325967119847173. DOI: 10.1177/2325967119847173.
|
[41] |
Olivos MA, Cortés GS, Ferniza GJ, et al. Arthroscopic treatment of patellar and trochlear cartilage lesions with matrix encapsulated chondrocyte implantation versus microfracture: quantitative assessment with MRI T2-mapping and MOCART at 4-year follow-up[J]. Cartilage, 2021, 12(3): 320-332.
|
[42] |
Knutsen G, Drogset JO, Engebretsen L, et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years[J]. J Bone Joint Surg Am, 2016, 98(16): 1332-1339.
|
[43] |
Kraeutler MJ, Belk JW, Purcell JM. Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee a systematic review of 5-year outcomes[J]. Am J Sports Med, 2018, 46(4): 995-999.
|
[44] |
Bode G, Ogon P, Pestka J, et al. Clinical outcome and return to work following single-stage combined autologous chondrocyte implantation and high tibial osteotomy[J]. Int Orthop, 2015, 39(4): 689-696.
|
[45] |
Che JZ. Application of tissue-engineered cartilage with BMP-7 gene to repair knee joint cartilage injury in rabbits[J]. Knee Surg Sport Traumatol Arthrosc, 2010, 18(4): 496-503.
|
[46] |
Richter DL, Tanksley JA, Miller MD. Osteochondral autograft transplantation: a review of the surgical technique and outcomes[J]. Sports Med Arthrosc Rev, 2016, 24(2): 74-78.
|
[47] |
Richter DL, Schenck RC, Wascher DC, et al. Knee articular cartilage repair and restoration techniques: a review of the literature[J]. Sports Health, 2016, 8(2): 153-160.
|
[48] |
Kumagai K, Akamatsu Y, Kobayashi H, et al. Mosaic osteochondral autograft transplantation versus bone marrow stimulation technique as a concomitant procedure with opening-wedge high tibial osteotomy for spontaneous osteonecrosis of the medial femoral condyle[J]. Arthroscopy, 2018, 34(1): 233-240.
|
[49] |
Minzlaff P, Feucht MJ, Saier T, et al. Osteochondral autologous transfer combined with valgus high tibial osteotomy: long-term results and survivorship analysis[J]. Am J Sports Med, 2013, 41(10): 2325-2332.
|
[50] |
Hishimura R, Onodera T, Hontani KA, et al. Osteochondral autograft transplantation technique augmented by an ultrapurified alginate gel enhances osteochondral repair in a rabbit model[J]. Am J Sports Med, 2019, 47(2): 468-478.
|
[51] |
Chahla J, Sweet MC, Okoroha KR, et al. Osteochondral allograft transplantation in the patellofemoral joint: a systematic review[J]. Am J Sports Med, 2019, 47(12): 3009-3018.
|
[52] |
Bhardwaj N, Devi D, Mandal BB. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors[J]. Macromol Biosci, 2015, 15(2): 153-182.
|
[53] |
Fisher MH. Cartilage repair and subchondral bone remodeling in response to focal lesions in a mini-pig model:implications for tissue engineering[J]. Tissue Eng Part A, 2015, 21(3/4): 850-860.
|
[54] |
He A, Liu L, Luo X, et al. Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model[J]. Sci Rep, 2017, 7(2): 404-416.
|
[55] |
Goldberg AJ. The use of mesenchymal stem cells for cartilage repair and regeneration:a systematic review[J]. J Orthop Surg Res, 2017, 12(1): 39-68.
|
[56] |
Liao JQ. Recent developments in Scaffold-Guided cartilage tissue regeneration[J]. J Biomed Nanotechnol, 2014, 10(10): 3085-3104.
|
[57] |
Bonani W, Singhatanadgige W, Pornanong A, et al. Natural origin materials for osteochondral tissue engineering[J]. Adv Exp Med Biol, 2018, 10(58): 3-30.
|
[58] |
Sawatjui N, Damrongrungruang T, Leeanansaksiri W, et al. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells[J]. Mater Sci Eng C Mater Biol Appl, 2015, 5(2): 90-96.
|
[59] |
Iulian A, Dan L, Camelia T, et al. Synthetic materials for osteochondral tissue engineering[J]. Adv Exp Med Biol, 2018, 10 (58): 31-52.
|
[60] |
Giretova M, Medvecky L, Petrovova E, et al. Polyhydroxybutyrate/chitosan 3D scaffolds promote in vitro and in vivo chondrogenesis[J]. Appl Biochem Biotechnol, 2019, 189(2): 556-575.
|
[61] |
Kim YS, Chung PK, Suh DS, et al. Implantation of mesenchymal stem cells in combination with allogenic cartilage improves cartilage regeneration and clinical outcomes in patients with concomitant high tibial osteotomy[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(2): 544-554.
|
[62] |
Kim MS, Koh IJ, Choi YJ, et al. Collagen augmentation improves the quality of cartilage repair after microfracture in patients undergoing high tibial osteotomy: a randomized controlled trial[J]. Am J Sports Med, 2017, 45(8): 1845-1855.
|