切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (06) : 693 -699. doi: 10.3877/cma.j.issn.1674-134X.2021.06.007

综述

长链非编码RNA H19影响骨关节炎中骨软骨代谢的研究进展
郑辉1, 罗雍猷2, 谢登辉1, 房健立1, 方航1, 张荣凯3,()   
  1. 1. 510002 广州,南方医科大学第三附属医院关节外科
    2. 730000 兰州,解放军联勤保障部队第940医院
    3. 510002 广州,南方医科大学第三附属医院关节外科;860003 林芝市人民医院
  • 收稿日期:2020-12-01 出版日期:2021-12-01
  • 通信作者: 张荣凯
  • 基金资助:
    广州市科技计划项目(201904010034); 西藏自治区自然科学基金(XZ2020ZR-ZY65(Z))

Research progress of long non-coding RNA H19 in osteoarthritis cartilage and subchondral boner

Hui Zheng1, Yongyou Luo2, Denghui Xie1, Jianli Fang1, Hang Fang1, Rongkai Zhang3,()   

  1. 1. Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedic), Guangzhou 510002, China
    2. The 940th Hospital of Joint Logistics Support force of PLA, Lanzhou 730000, China
    3. Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedic), Guangzhou 510002, China; Linzhi People′s Hospital of Tibet, Linzhi 860003, China
  • Received:2020-12-01 Published:2021-12-01
  • Corresponding author: Rongkai Zhang
引用本文:

郑辉, 罗雍猷, 谢登辉, 房健立, 方航, 张荣凯. 长链非编码RNA H19影响骨关节炎中骨软骨代谢的研究进展[J]. 中华关节外科杂志(电子版), 2021, 15(06): 693-699.

Hui Zheng, Yongyou Luo, Denghui Xie, Jianli Fang, Hang Fang, Rongkai Zhang. Research progress of long non-coding RNA H19 in osteoarthritis cartilage and subchondral boner[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2021, 15(06): 693-699.

长链非编码RNA(lncRNA)是一类长度约200 bp,一般不能进行蛋白质编码的长链RNA,有着多种多样的生物学功能。通过转录、翻译和DNA表观遗传修饰参与调控基因表达。作为一个相对新生的领域,目前对于lnc-RNA的研究主要集中在调控胚胎生长和干细胞分化以及肿瘤的发生和发展的监管作用。然而,越来越多的lncRNA被认为是与骨关节炎病理学相关的炎症途径的候选调节因子。此外,越来越多的研究发现lncRNA在骨关节炎关节组织中有差异表达。但lncRNA H19与骨关节炎(OA)相关性报道较少,在这篇综述中,以国内外最新研究为基础,重点介绍lncRNA H19在骨关节炎中的调控机制,包括翅缘缺刻(Notch)信号、无翼蛋白(Wnt)信号、内源竞争RNA(ceRNA)、lnc-RNA/微小RNA(microRNA)/信使RNA(mRNA)等。确定lncRNAs在骨关节炎中的表达和功能作用,不仅可以促进对骨关节炎病理学基础的表观遗传学的理解,而且最终可能有助于确定治疗干预的新靶点。

Long non-coding RNAs (lncRNAs) are a class of long non-coding RNAs about 200 bp in length that generally cannot be protein-encoded and have various biological functions. It is involved in the regulation of gene expression through transcriptional, translational and DNA epigenetic modifications. As a relatively nascent field, current research on lnc-RNA has focused on regulatory roles in the regulation of embryonic growth and stem cell differentiation as well as the development and progression of tumors. However, an increasing number of lncRNAs have been implicated as candidate regulators of inflammatory pathways associated with osteoarthritis pathology. In addition, more and more studies have found that lncRNAs are differentially expressed in osteoarthritic joint tissues. However, there are few reports on the correlation between lncRNAH19 and osteoarthritis (OA). Based on the latest research at home and abroad, this review focued on the regulatory mechanism of lncRNAH19 in osteoarthritis, including Notch signaling, wingless(Wnt)signaling, endogenous competitive RNAs (ceRNA), lnc-RNA/microRNA/messenger RNA(mRNA), etc. Determining the expression and functional roles of lncRNAs in osteoarthritis can not only advance the understanding of epigenetics underlying osteoarthritis pathology, but may ultimately help identify novel targets for therapeutic intervention.

表1 lncRNA H19在癌症中的表达变化
表2 不同lncRNA在OA关节组织中差异表达的证据
图1 Lnc-RNA(长链非编码RNA) H19对成骨分化的调控机制示意图注:LEF-1(淋巴细胞增强因子-1);TCF(T细胞因子);FAK(粘着斑激酶);PTK2(蛋白酪氨酸激酶2);HDAC4/5(组蛋白脱乙酰酶4/5);BMP9(骨形态发生蛋白9)
[1]
Bijlsma JJ, Berenbaum F, Lafeber FG. Osteoarthritis:an update with relevance for clinical practice[J]. Lancet, 2011, 377(9783): 2115-2126.
[2]
Cheng C, Gao SG, Lei GH. Association of osteopontin with osteoarthritis[J]. Rheumatol Int, 2014, 34(12): 1627-1631.
[3]
Neogi T. The epidemiology and impact of pain in osteoarthritis[J]. Osteoarthritis Cartilage, 2013, 21(9, SI): 1145-1153.
[4]
Hayami T, Pickarski M, Zhuo Y, et al. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis[J]. Bone, 2006, 38(2): 234-243.
[5]
Cheng C, Zhang FJ, Tian J, et al. Osteopontin inhibits HIF-2α mRNA expression in osteoarthritic chondrocytes[J]. Exp Ther Med, 2015, 9(6): 2415-2419.
[6]
Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage[J]. Clin Orthop Relat Res, 1986, 12(213): 34-40.
[7]
Huang J, Zhao L, Fan Y, et al. The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression[J/OL]. Nat Commun, 2019, 10(1): 2876. DOI: 10.1038/s41467-019-10753-5.
[8]
Deane KD, Demoruelle MK, Kelmenson LB, et al. Genetic and environmental risk factors for rheumatoid arthritis[J]. Best Pract Res Clin Rheumatol, 2017, 31(1): 3-18.
[9]
Traylor M, Curtis C, Patel H, et al. Genetic and environmental risk factors for rheumatoid arthritis in a UK African ancestry population:the genra Case-Control study[J]. Rheumatology (Oxford), 2017, 56(8): 1282-1292.
[10]
Berenbaum F. Osteoarthritis year 2010 in review: pharmacological therapies[J]. Osteoarthritis Cartilage, 2011, 19(4): 361-365.
[11]
Hawker GA, Mian S, Bednis K, et al. Osteoarthritis year 2010 in review: non-pharmacologic therapy[J]. Osteoarthritis Cartilage, 2011, 19(4): 366-374.
[12]
Fu M, Huang G, Zhang Z, et al. Expression profile of long noncoding RNAs in cartilage from knee osteoarthritis patients[J]. Osteoarthritis Cartilage, 2015, 23(3): 423-432.
[13]
Liu Q, Zhang X, Dai L, et al. Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis[J]. Arthritis Rheumatol, 2014, 66(4): 969-978.
[14]
Yf L, Li SH, Liu Y, et al. Long noncoding RNA CIR promotes chondrocyte extracellular matrix degradation in osteoarthritis by acting as a sponge for Mir-27b[J]. Cell Physiol Biochem, 2017, 43(2): 602-610.
[15]
Wang G, Bu X, Zhang Y, et al. LncRNA-UCA1 enhances MMP-13 expression by inhibiting miR-204-5p in human chondrocytes[J]. Oncotarget, 2017, 8(53): 91281-91290.
[16]
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs[J]. Mol Cell, 2011, 43(6, SI): 904-914.
[17]
Perkel JM. Visiting "noncodarnia" [J]. Biotechniques, 2013, 54(6): 301, 303-304.
[18]
Qin W, Li X, Xie L, et al. A long non-coding RNA, APOA4-AS, regulates APOA4 expression depending on HuR in mice[J]. Nucleic Acids Res, 2016, 44(13): 6423-6433.
[19]
Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene[J]. Nature, 1991, 351(6322): 153-155.
[20]
Gabory A, Ma RC, Le DA, et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice[J]. Development, 2009, 136(20): 3413-3421.
[21]
Yoshimura H, Matsuda Y, Yamamoto M, et al. Expression and role of long non-coding RNA H19 in carcinogenesis[J]. Front Biosci (Landmark Ed), 2018, 23: 614-625.
[22]
Ratajczak MZ, Shin DM, Ratajczak J, et al. A novel insight into aging:are there pluripotent very small embryonic-like stem cells(vsels)in adult tissues overtime depleted in an IGF-1-dependent manner?[J]. Aging, 2010, 2(11): 875-883.
[23]
Raveh E, Matouk IJ, Gilon M, et al. The H19 long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory[J/OL]. Mol Cancer, 2015, 14: 184. DOI: 10.1186/s12943-015-0458-2.
[24]
Matouk IJ, Halle D, Raveh E, et al. The role of the oncofetal H19 lncRNA in tumor metastasis: orchestrating the EMT-MET decision[J]. Oncotarget, 2016, 7(4): 3748-3765.
[25]
Venkatraman A, He XC, Thorvaldsen JL, et al. Maternal imprinting at the H19-IGF2 locus maintains adult haematopoietic stem cell quiescence[J]. Nature, 2013, 500(7462): 345-349.
[26]
Dugimont T, Curgy JJ, Wernert N, et al. The H19 gene is expressed within both epithelial and stromal components of human invasive adenocarcinomas[J]. Biol Cell, 1995, 85(2/3): 117-124.
[27]
Müller V, Oliveira-Ferrer L, Steinbach B, et al. Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer[J]. Mol Oncol, 2019, 13(5): 1137-1149.
[28]
Yang Z, Lu Y, Xu Q, et al. HULC and H19 played different roles in overall and disease-free survival from hepatocellular carcinoma after curative hepatectomy: a preliminary analysis from gene expression omnibus[J/OL]. Dis Markers, 2015: 191029. DOI: 10.1155/2015/191029.
[29]
Zhang EB, Han L, Yin DD, et al. C-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer[J/OL]. Med Oncol, 2014, 31(5): 914. DOI: 10.1007/s12032-014-0914-7.
[30]
Wang J, Zhao L, Shang K, et al. Long non-coding RNA H19, a novel therapeutic target for pancreatic cancer[J/OL]. Mol Med, 2020, 26(1): 30. DOI: 10.1186/s10020-020-00156-4.
[31]
Jia P, Cai H, Liu X, et al. Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a[J]. Cancer Lett, 2016, 381(2): 359-369.
[32]
Gong YY, Peng MY, Yin DQ, et al. Long non-coding RNA H19 promotes the osteogenic differentiation of rat ectomesenchymal stem cells via Wnt/β-catenin signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(24): 8805-8813.
[33]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4): 629-641.
[34]
García-Venzor A, Mandujano-Tinoco EA, Lizarraga F, et al. Microenvironment-regulated lncRNA-HAL is able to promote stemness in breast cancer cells[J/OL]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(12): 118523. DOI: 10.1016/j.bbamcr.2019.118523.
[35]
Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer[J]. Oncogene, 2017, 36(41): 5661-5667.
[36]
Wang J, Su Z, Lu S, et al. LncRNA HOXA-AS2 and its molecular mechanisms in human cancer[J]. Clin Chim Acta, 2018, 485: 229-233.
[37]
Chen Y, Lin Y, Bai Y, et al. A long noncoding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network identifies eight lncRNA biomarkers in patients with osteoarthritis of the knee[J]. Med Sci Monit, 2019, 25: 2058-2065.
[38]
Jiang SD, Lu J, Deng ZH, et al. Long noncoding RNAs in osteoarthritis[J]. Joint Bone Spine, 2017, 84(5): 553-556.
[39]
Song J, Ahn C, Chun CH, et al. A long non-coding RNA, GAS5, plays a critical role in the regulation of MIR-21 during osteoarthritis[J]. J Orthop Res, 2014, 32(12): 1628-1635.
[40]
Xing D, Liang JQ, Li Y, et al. Identification of long noncoding RNA associated with osteoarthritis in humans[J]. Orthop Surg, 2014, 6(4): 288-293.
[41]
Steck E, Boeuf S, Gabler J, et al. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions[J]. J Mol Med (Berl), 2012, 90(10): 1185-1195.
[42]
Hu Y, Li S, Zou Y. Knockdown of LncRNA H19 relieves LPS-Induced damage by modulating miR-130a in osteoarthritis[J]. Yonsei Med J, 2019, 60(4): 381-388.
[43]
Huang G, Kang Y, Huang Z, et al. Identification and characterization of long non-coding RNAs in osteogenic differentiation of human adipose-derived stem cells[J]. Cell Physiol Biochem, 2017, 42(3): 1037-1050.
[44]
王庆宇,陈高扬,杜珍武,等.骨髓间充质干细胞多能分化及骨疾病相关LncRNA研究进展[J].中国体视学与图像分析201722(1):103-109.
[45]
Liang WC, Wm F, Wang YB, et al. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA[J/OL]. Sci Rep, 2016, 6: 20121. DOI: 10.1038/srep20121.
[46]
Wu J, Zhao J, Sun L, et al. Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138[J]. Bone, 2018, (108): 62-70.
[47]
Liao J, Yu X, Hu X, et al. lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through notch signaling[J]. Oncotarget, 2017, 8(32): 53581-53601.
[48]
Tan F, Wang D, Yuan Z. The fibroblast-like synoviocyte derived exosomal long non-coding RNA H19 alleviates osteoarthritis progression through the miR-106b-5p/TIMP2 axis[J]. Inflammation, 2020, 43(4): 1498-1509.
[49]
Zhang X, Liu X, Ni X, et al. Long non-coding RNA H19 modulates proliferation and apoptosis in osteoarthritis via regulating miR-106a-5p[J]. J Biosci, 2019, 44(6): 128.
[50]
Cao L, Wang Y, Wang Q, et al. LncRNA Foxd2-As1 regulates chondrocyte proliferation in osteoarthritis by acting as a sponge of miR-206 to modulate CCND1 expression[J]. Biomed Pharmacother, 2018, (106): 1220-1226.
[51]
Dou P, Hu R, Zhu W, et al. Long non-coding RNA HOTAIR promotes expression of ADAMTS-5 in human osteoarthritic articular chondrocytes[J]. Pharmazie, 2017, 72(2): 113-117.
[52]
Yang ZM, Tang YX, Lu HD, et al. Long non-coding RNA reprogramming (lncRNA-ROR) regulates cell apoptosis and autophagy in chondrocytes[J]. J Cell Biochem, 2018, 119(10): 8432-8440.
[53]
Ye D, Jian W, Feng J, et al. Role of long noncoding RNA ZFAS1 in proliferation, apoptosis and migration of chondrocytes in osteoarthritis[J/OL]. Biomed Pharmacother, 2018, (104): 825-831. DOI: 10.1016/j.biopha.2018.04.124
[54]
Fan X, Yuan J, Xie J, et al. Long non-protein coding RNA DANCR functions as a competing endogenous RNA to regulate osteoarthritis progression via miR-577/SphK2 axis[J]. Biochem Biophys Res Commun, 2018, 500(3): 658-664.
[55]
Xiao Y, Bao Y, Tang L, et al. LncRNA Mir4435-2HG is downregulated in osteoarthritis and regulates chondrocyte cell proliferation and apoptosis[J/OL]. J Orthop Surg Res, 2019, 14(1): 247. DOI: 10.1186/s13018-019-1278-7.
[56]
Huang B, Liu X. Upregulation of long noncoding TNFSF10 contributes to osteoarthritis progression through the miR-376-3p/FGFR1 axis[J]. J Cell Biochem, 2019, 120(12): 19610-19620.
[57]
Li Q, Zhang Z, Guo S, et al. LncRNA ANCR is positively correlated with transforming growth factor-β1 in patients with osteoarthritis[J]. J Cell Biochem, 2019, 120(9): 14226-14232.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[5] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[6] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[7] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[8] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[9] 胡银华, 薛龙. 中国中老年人症状性膝骨关节炎的发病率及危险因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 470-478.
[10] 利洪艺, 杨浪, 温国洪, 关鸿, 茹江英, 王湘江. 全膝股骨假体矢状面位置与术后膝前痛及功能的关系[J]. 中华关节外科杂志(电子版), 2023, 17(04): 479-484.
[11] 闫兆龙, 张镇斌, 李广兴, 赵璋, 张业勇, 殷鲁旭, 李树锋. 胫骨高位截骨术治疗膝骨关节炎的早期效果及影响因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 492-499.
[12] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[13] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[14] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[15] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
阅读次数
全文


摘要