切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (01) : 57 -62. doi: 10.3877/cma.j.issn.1674-134X.2020.01.010

所属专题: 骨科学 文献

基础论著

人体髋臼前后柱骨硬度分布特征研究
刘国彬1, 殷兵1, 王建朝1, 李升1, 张晓娟1, 吴卫卫1, 胡祖圣1, 张英泽1,()   
  1. 1. 050051 石家庄,河北医科大学第三医院创伤急救中心,河北省生物力学重点实验室
  • 收稿日期:2018-12-02 出版日期:2020-02-01
  • 通信作者: 张英泽

Research on human bone microhardness distribution characteristics of acetabulum anterior and posterior columns

guobin Liu1, Bing Yin1, Jianzhao Wang1, Sheng Li1, Xiaojuan Zhang1, Weiwei Wu1, Zusheng Hu1, Yingze Zhang1,()   

  1. 1. Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
  • Received:2018-12-02 Published:2020-02-01
  • Corresponding author: Yingze Zhang
  • About author:
    Corresponding author: Zhang Yingze, Email:
引用本文:

刘国彬, 殷兵, 王建朝, 李升, 张晓娟, 吴卫卫, 胡祖圣, 张英泽. 人体髋臼前后柱骨硬度分布特征研究[J]. 中华关节外科杂志(电子版), 2020, 14(01): 57-62.

guobin Liu, Bing Yin, Jianzhao Wang, Sheng Li, Xiaojuan Zhang, Weiwei Wu, Zusheng Hu, Yingze Zhang. Research on human bone microhardness distribution characteristics of acetabulum anterior and posterior columns[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(01): 57-62.

目的

研究人体髋臼前柱和后柱的硬度分布特征,探索骨硬度分布的科研价值及临床应用前景。

方法

本研究所用两男一女3具标本均由河北医科大学解剖教研室提供,选取3对髋臼前后柱样本,取出全部髋骨后剔除软组织,运用微型台锯将髋骨分割为髋臼前柱和后柱,后用高精慢速锯将髋臼前后柱切割成若干厚3 mm的骨组织切片,固定在载玻片后用砂纸打磨。使用维氏硬度仪测试骨组织切片不同解剖区域皮质骨和松质骨的硬度值。本研究采用50 g力加载50 s、维持12 s标准操作方法测定,组间数据比较采用配对t检验。

结果

本研究在人体髋臼前柱和髋臼后柱随机切取骨片,代表了髋臼前后柱纵向的不同位置,测量共计450个有效值,3个样本髋臼前柱总体硬度范围在18.9~33.8 HV,均值(25.2±3.1)HV;髋臼后柱硬度范围在23.1~39.1 HV,均值(31.9±3.8) HV。男性捐献者髋臼前、后柱总体硬度范围分别为18.8~33.8 HV及23.1~39.1 HV;女性捐献者髋臼前、后柱总体硬度范围分别为19.4~33.8 HV及24.6~38.9 HV,所有标本中后柱平均骨硬度值均大于前柱,且差异有统计学意义(t=7.502、4.724、5.487,P<0.01),研究数据表明男性和女性髋臼前柱与后柱均存在硬度分布差异。

结论

人体髋臼前后柱骨硬度值个体间存在差异,但均为后柱骨硬度大于前柱。骨硬度值的研究可为髋臼骨折内植物的置入位置、置钉长度及方向等提供参考,同时为研发符合人体梯度弹性模量的内植物及骨盆髋臼假体提供可靠的数据支撑。

Objective

To analysis the hardness distribution characteristics of the anterior and posterior column of the acetabulum, and to explore the value of bone hardness distribution in scientific research and clinical application.

Methods

The metatarsal bones in this study were collected from three healthy donors (two males, one female, Hebei Medical University). Three pairs of anterior and posterior acetabular column were selected, all the soft tissue was removed. Bone specimens with a thickness of 3 mm were taken from anterior and posterior acetabular column with a low-speed saw. The microhardness of the bone tissue was measured using a Vickers microhardness tester after polish. The indentation load and dwell time was set to 50 g and 12 s in this study. The paired t test was used for data comparison between groups.

Results

Bone specimens, which were randomly cut from the anterior acetabular column and the posterior acetabular column in human body, representing different longitudinal positions of the anterior and posterior acetabular columns. Totally, 450 valid values at different bones and anatomic sites were involved in our result. The total hardness of the acetabular anterior column ranged from 18.9 to 33.8 HV with a mean of (25.2±3.1) HV and that of the acetabular posterior column ranged from 23.1 to 39.1 HV with a mean value of (31.9±3.8) HV. Bone hardness of acetabular anterior column and posterior column of male donor ranged from 18.8 to 33.8 HV and 23.1 to 39.1 HV respectively. For the female donor, the total hardness of acetabular anterior column and posterior column were 19.4-33.8 HV and 24.6-38.9 HV, the average bone hardness of posterior column of the acetabulum was larger than that of the anterior column, and the difference was statistically significant (t=7.502、4.724、5.487, all P<0.01). The data showed that there was a difference in hardness distribution between the anterior and posterior column of the acetabulum in both men and women.

Conclusions

There are individual differences for the hardness of acetabular, and the hardness of posterior column is higher than that of anterior column. This study can provide a reference for the position of implants, length and direction of screw, as well as provide reliable data support for the development of implants and acetabular prostheses in line with the gradient elastic modulus of human body.

图2 髋臼前柱(左)及后柱(右)骨组织切片大体图
图4 KB-5显微硬度测试仪测试骨骼试样
图6 髋臼前、后柱取样示意图。黑色阴影区域为髋臼后柱;点状灰色区域为髋臼前柱;红色线条为髋臼后柱取材位置;蓝色线条为髋臼前柱取材位置
图7 人体髋臼前后柱不同部位显微骨硬度值分布
表2 3具标本髋臼骨硬度值分布及差异显著性[HV,(±s)]
[1]
Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone[J]. Med Eng Phys, 1998, 20(2): 92-102.
[2]
Rivadeneira F, Zillikens MC, De Laet CE, et al. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study[J]. J Bone Miner Res, 2007, 22(11): 1781-1790.
[3]
Yang L, Peel N, Clowes JA, et al. Use of DXA-based structure engineering models of the proximal femur to discriminate hip fracture[J]. J Bone Miner Res, 2009, 24(1):33-42.
[4]
Zysset PK. Indentation of bone tissue: a short review[J]. Osteoporos Int, 2009, 20(6): 1049-1055.
[5]
Blackburn J, Hodgskinson R, Currey JD, et al. Mechanical properties of microcallus in human cancellous bone[J]. J Orthop Res, 1992, 10(2): 237-246.
[6]
Coats AM, Zioupos P, Aspden RM. Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis[J]. Calcif Tissue Int, 2003, 73(1): 66-71.
[7]
Riches PE, Everitt NM, Heggie AR, et al. Microhardness anisotropy of lamellar bone[J]. J Biomech, 1997, 30(10): 1059-1061.
[8]
Ziv V, Wagner HD, Weiner S. Microstructure-microhardness relations in parallel-fibered and lamellar bone[J]. Bone, 1996, 18(5): 417-428.
[9]
Evans GP, Behiri JC, Currey JD,et al. Microhardness and Young′s modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue[J]. J Mater Sci-Mater M, 1990, 1(1): 38-43.
[10]
Evans FG: Mechanical properties of bone [M]. 1973, Thomas.
[11]
Huja SS, Katona TR, Moore BK, et al. Microhardness and anisotropy of the vital osseous interface and endosseous implant supporting bone[J]. J Orthop Res, 1998, 16(1):54-60.
[12]
胡祖圣,李升,刘国彬,等.人体骨骼显微硬度及其相关因素初步研究[J].河北医科大学学报,2016,37(1):102-104.
[13]
殷兵,胡祖圣,李升,等.人体骨骼显微硬度研究[J].河北医科大学学报,2016,37(12):1472-1474.
[14]
Johnson WM, Rapoff AJ. Microindentation in bone: hardness variation with five independent variables[J]. J Mater Sci Mater Med, 2007, 18(4): 591-597.
[15]
Designation A. Standard test method for microindentation hardness of materials[J]. ASTM, Philadelphia, 1999: 384-399.
[16]
Hodgskinson R, Currey JD, Evans GP. Hardness, an indicator of the mechanical competence of cancellous bone[J]. J Orthop Res, 1989, 7(5): 754-758.
[17]
Harnroongroj T. The role of the anterior column of the acetabulum on pelvic stability: a biomechanical study[J]. Injury, 1998, 29(4): 293-296.
[18]
Shazar N, Brumback RJ, Novak VP, et al. Biomechanical evaluation of transverse acetabular fracture fixation[J]. Clin Orthop Relat Res, 1998, Jul(352): 215-222.
[19]
王庆贤,张英泽,潘进社,等.髋臼横断骨折不同内固定方式的生物力学研究[J].中华物理医学与康复杂志,2001,23(5):279-281.
[20]
Sawaguchi T, Brown TD, Rubash HE, et al. Stability of acetabular fractures after internal fixation[J]. Acta Orthop Scand, 1984, 55(6): 601-605.
[21]
周华,高仕长,周程鹏,等.三维重建模拟经皮拉力螺钉固定髋臼前柱骨折的解剖学研究[J].中国临床解剖学杂志,2015,33(2):148-154.
[22]
孟庆兵,刘璠.髋臼骨折诊治的进展[J/CD].中华关节外科杂志(电子版),2008,2(2):61-64.
[23]
Boudissa M, Francony F, Kerschbaumer G, et al. Epidemiology and treatment of acetabular fractures in a level-1 trauma centre: retrospective study of 414 patients over 10 years[J]. Orthop Traumatol Surg Res, 2017, 103(3): 335-339.
[24]
王红强,高延征,刘继军,等.重建钛板及记忆合金内固定系统治疗髋臼骨折的疗效分析[J/CD].中华关节外科杂志(电子版),2010,04(3):357-361.
[1] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[2] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[3] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[4] 高建松, 陈晓晓, 冯婷, 包剑锋, 魏淑芳, 潘林. 基于超声瞬时弹性成像的多参数决策树模型评估慢性乙型肝炎患者肝纤维化等级[J]. 中华医学超声杂志(电子版), 2023, 20(09): 923-929.
[5] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[6] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[7] 张莲莲, 惠品晶, 丁亚芳. 颈部血管超声在粥样硬化斑块易损性评估中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 816-821.
[8] 刘丹妮, 敖梦, 冉海涛, 李世玉, 秦芳. 三维超声心动图及二维斑点追踪成像对持续性心房颤动复律后双心房逆向重构的评估[J]. 中华医学超声杂志(电子版), 2023, 20(08): 827-835.
[9] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[10] 李三祥, 李佳, 刘俊峰, 吕东晨, 方晖东, 谭朝晖, 刘杰, 潘佐, 乔建坤. 基于CT影像的三维重建成像技术在腹腔镜大肾上腺肿瘤切除术中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 570-574.
[11] 杨天池, 韩威, 邱枫, 祁佳慧. 术中胰腺超声弹性成像在胰腺质地评估中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 646-650.
[12] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[13] 邱春华, 张志宏. 1108例小肠疾病的临床诊断及检查策略分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 948-954.
[14] 赵文毅, 邹冰子, 蔡冠晖, 刘永志, 温红. 超声应变力弹性成像联合MRI-DWI靶向引导穿刺在前列腺病变诊断中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 988-994.
[15] 耿磊, 张照婷, 许磊, 黄海, 孙毅, 杨伏猛, 徐凯, 胡春峰. 帕金森病前驱期基底神经节环路磁共振弥散张量成像的应用研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 995-1003.
阅读次数
全文


摘要