[1] |
Lin Z, Willers C, Xu JK, et al. The chondrocyte: Biology and clinical application[J]. Tissue Eng, 2006, 12(7): 1971-1984.
|
[2] |
Aigner T, Stove J. Collagens-major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair[J]. Adv Drug Deliv Rev, 2003, 55(12): 1569-1593.
|
[3] |
Carnes J, Stannus O, Cicuttini FM, et al. Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years[J]. Osteoarthritis Cartilage, 2012, 20(12): 1541-1547.
|
[4] |
Zhu Y, Yuan M, Meng HY, et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review[J]. Osteoarthritis Cartilage,2013, 21(11): 1627-1637.
|
[5] |
Mastbergen SC, Saris DBF, Lafeber FPJG. Functional articular cartilage repair: here, near, or is the best approach not yet clear?[J]. Nat Rev Rheumatol, 2013, 9(5) : 277-290.
|
[6] |
Richter DL, Schenck RC, Wascher DC, et al. Knee articular cartilage repair and restoration techniques: a review of the literature[J]. Sports Health, 8(2): 153-160.
|
[7] |
Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
|
[8] |
Dai WD, Kawazoe N, Lin XT, et al. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering[J]. Biomaterials, 2010, 31(8): 2141-2152.
|
[9] |
邹健宇,刘日许,郑仕聪,共培养体系在关节软骨组织工程中的应用研究[J/CD]. 中华关节外科杂志(电子版), 2018, 12(6): 835-841.
|
[10] |
Qing C, Wei-Ding C, Wei-Min F. Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components[J]. Braz J Med Biol Res, 2011, 44(4): 303-310.
|
[11] |
Bekkers JE, Tsuchida AI, van Rijen MH, et al. Single-stage cell-based cartilage regeneration using a combination of chondrons and mesenchymal stromal cells comparison with microfracture[J]. Am J Sports Med, 2013, 41(9): 2158-2166.
|
[12] |
Giovannini S, Diaz-Romero J, Aigner T, et al. Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro[J]. Eur Cell Mater, 2010, 20, (5): 245-259.
|
[13] |
Gomez-Leduc T, Desance M, Hervieu MA, et al. Hypoxia is a critical parameter for chondrogenic differentiation of human umbilical cord blood mesenchymal stem cells in type I/III collagen sponges[J/OL]. Int J Mol Sci, 2017, 18(9):pii: E1933. doi: 10.3390/ijms18091933.
|
[14] |
徐磊,叶朝阳,周燕,等.体外传代培养兔关节软骨细胞的去分化现象[J].中国组织工程研究,2013,17(20):3626-3634.
|
[15] |
Callahan LA, Ganios AM, Mcburney DL, et al. ECM production of primary human and bovine chondrocytes in hybrid PEG hydrogels containing type I collagen and hyaluronic acid[J]. Biomacromolecules, 2012, 13(5): 1625-1631.
|
[16] |
Zeng L, Chen XF, Zhang Q, et al. Redifferentiation of dedifferentiated chondrocytes in a novel three-dimensional microcavitary hydrogel[J]. J Biomed Mater Res A, 2015, 103(5): 1693-1702.
|
[17] |
Schuh E, Hofmann S, Stok K, et al. Chondrocyte redifferentiation in 3D: the effect of adhesion site density and substrate elasticity[J]. J Biomed Mater Res A, 2012, 100A(1): 38-47.
|
[18] |
Sailor LZ, Hewick RM, Morris EA. Recombinant human bone morphogenetic protein-2 maintains the articular chondrocyte phenotype in long-term culture[J]. J Orthop Res, 1996, 14(6): 937-945.
|
[19] |
Yamamoto Y, Mochida J, Sakai D, et al. Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system[J]. Spine (Phila Pa 1976), 2004, 29(14): 1508-1514.
|
[20] |
孙明林,朱雷,吕丹.Ⅱ型胶原蛋白对兔去分化软骨细胞再分化的作用[J].中国修复重建外科杂志,2010,24(10):1244-1248.
|
[21] |
Zuo Q, Cui W, Liu F, et al. Co-cultivated mesenchymal stem cells support chondrocytic differentiation of articular chondrocytes[J]. Int Orthop, 2013, 37(4): 747-752.
|