[1] |
Chen D, Shen J, Zhao W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism[J/OL]. Bone Res, 2017, 5: 16044. doi: 10.1038/boneres.2016.44.
|
[2] |
Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2013, 380(9859): 2197-2223.
|
[3] |
Peffers MJ, Balaskas P, Smagul A.Osteoarthritis year in review 2017: genetics and epigenetics[J]. Osteoarthritis Cartilage, 2018, 26(3): 304-311.
|
[4] |
Fu M, Huang G, Zhang Z, et al. Expression profile of long noncoding RNAs in cartilage from knee osteoarthritis patients[J]. Osteoarthritis Cartilage, 2015, 23(3): 423-432.
|
[5] |
Zhang Z, Kang Y, Zhang Z, et al. Expression of microRNAs during chondrogenesis of human adipose-derived stem cells[J]. Osteoarthritis Cartilage, 2012, 20(12): 1638-1646.
|
[6] |
D’Adamo S, Cetrullo S, Minquzzi M, et al. MicroRNAs and autophagy:fine players in the control of chondrocyte homeostatic activities in osteoarthritis[J/OL]. Oxid Med Cell Longev, 2017,2017: 3720128. doi: 10.1155/2017/3720128.
|
[7] |
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010, 79(1): 351-379.
|
[8] |
Liu N, Olson EN. MicroRNA regulatory networks in cardiovascular development[J]. Dev Cell, 2010, 18(4): 510-525.
|
[9] |
Marta K, Dariusz S, Joanna C, et al. MiRNA expression in the cartilage of patients with osteoarthritis[J].J Orthop Surg Res,2017, 12(1): 51-57.
|
[10] |
Culley KL, Hui W, Barter MJ, et al. Class I histone deacetylase inhibition modulates metalloproteinase expression and blocks cytokine-induced cartilage degradation[J]. Arthritis Rheum, 2013, 65(7): 1822-1830.
|
[11] |
Carpio LR, Westendorf JJ. Histone deacetylases in cartilage homeostasis and osteoarthritis[J]. Curr Rheumatol Rep, 2016, 18(8): 52. doi: 10.1007/s11926-016-0602-z.
|
[12] |
Simon TC, Jeffries MA. The epigenomic landscape in osteoarthritis[J/OL]. Curr Rheumatol Rep, 2017,19(6): 30. doi: 10.1007/s11926-017-0661-9.
|
[13] |
Andres MC, Imagawa K, Hashimoto K, et al. Loss of methylation in cpg sites in the NF-κB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes[J]. Arthritis Rheum, 2013, 65(3): 732-742.
|
[14] |
Mao G, Zhang Z, Huang Z, et al. MiRNA-92a-3p regulates the expression of cartilage-specific genes by directly targeting histone deacetylase 2 in chondrogenesis and degradation[J]. Osteoarthritis Cartilage, 2017, 25(4): 521-532.
|
[15] |
Meng FG, Li ZW, Zhang ZQ, et al. MiRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3[J]. Theranostics, 2018, 8(10): 2862-2883.
|
[16] |
Chen WS, Chen LW, Zhang ZJ, et al. MicroRNA-455-3p modulates cartilage development and degeneration through modification of histone H3 acetylation[J]. Biochim Biophys Acta, 2016, 1863(12): 2881-2891.
|
[17] |
Sun H, Zhao XY, Zhang CY, et al. MiR-455-3p inhibits the degenerate process of chondrogenic differentiation through modification of DNA methylation[J/OL]. Cell Death Dis, 2018, 9(5): 537. doi: 10.1038/s41419-018-0565-2.
|
[18] |
Pais H, Nicolas FE, Soond SM, et al. Analyzing mRNA expression identifes Smad3 as a microRNA-140 target regulated only at protein level[J]. RNA, 2010, 16(3): 489-494.
|
[19] |
Li C, Hu Q, Chen Z, et al. MicroRNA-140 suppresses human chondrocyte hypertrophy by targeting SMAD1 and controlling bone morphogenetic protein pathway in osteoarthritis[J]. Am J Med Sci, 2018, 355(5): 477-487.
|
[20] |
Lin EA, Kong L, Bai XH, et al. MiR-199a, a bone morphogenic protein 2-responsive microRNA, regulates chondrogenesis via direct targeting to Smad1[J]. J Biol Chem, 2009, 284(17): 11326-11335.
|
[21] |
Zhang D, Cao X, Li J, et al. MiR-210 inhibits NF-κB signaling pathway by targeting DR6 in osteoarthritis[J/OL]. Sci Rep, 2015, 5: 12775. doi: 10.1038/srep12775.
|
[22] |
Hou CH, Yang ZB, Kang Y, et al. MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway[J]. FEBS Lett, 2015, 589(9): 1040-1047.
|
[23] |
Cui X, Wang S, Cai H, et al. Overexpression of microRNA-634 suppresses survival and matrix synthesis of human osteoarthritis chondrocytes by targeting PIK3R1[J/OL]. Sci Rep, 2016, 6: 23117. doi: 10.1038/srep23117.
|
[24] |
Ukai T, Sato M, Akutsu H, et al. MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism[J]. J Orthop Res, 2012, 30(12): 1915-1922.
|
[25] |
Liang ZJ, Zhuang H, Wang GX, et al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1beta-stimulated human articular chondrocyte C28/I2 cells[J]. Inflamm Res, 2012, 61(5): 503-509.
|
[26] |
Matsukawa T, Sakai T, Yonezawa T, et al. MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes[J/OL]. Arthritis Res Ther, 2013,15(1): R28. doi: 10.1186/ar4164.
|
[27] |
Li X, Zhen Z, Tang G, et al. MiR-29 and MiR-140 protect chondrocytes against the anti-proliferation and cell matrix signaling changes by IL-1β[J]. Mol Cells, 2016, 39(2): 103-110.
|
[28] |
Chen WS, Sheng PY, Huang ZY, et al. MicroRNA-381 regulates chondrocyte hypertrophy by inhibiting histone deacetylase 4 expression[J/OL]. Int J Mol Sci, 2016,17(9): E1377. doi: 10.3390/ijms17091377
|
[29] |
Budd E, Andres MC, Sanchez-Eisner T, et al. MiR-146b is down-regulated during the chondrogenic differentiation of human bone marrow derived skeletal stem cells and up-regulated in osteoarthritis[J/OL]. Sci Rep, 2017,7: 46704. doi: 10.1038/srep46704.
|
[30] |
Zhong N, Sun J, Min Z, et al. MicroRNA-337 is associated with chondrogenesis through regulating TGFBR2 expression[J].Osteoarthritis Cartilage, 2012, 20(6): 593-602.
|
[31] |
Kang L, Yang C, Song Y, et al. MicroRNA-23a-3p promotes the development of osteoarthritis by directly targeting SMAD3 in chondrocytes[J]. Biochem Biophys Res Commun, 2016, 478(1): 467-473.
|
[32] |
Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression[J]. Genome Res, 2012, 22(9): 1775-1789.
|
[33] |
Tian D, Sun S, Lee JT. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation[J]. Cell, 2010, 143(3): 390-403.
|
[34] |
Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell, 2011, 147(2): 358-369.
|
[35] |
Faghihi MA, Modarresi F, Khalil AM, et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase[J]. Nat Med,2008, 14(7): 723-730.
|
[36] |
Huang D, Chen JN, Yang LB, et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death[J]. Nat Immunol, 2018,19(10): 1112-1125.
|
[37] |
Rapicavoli NA, Qu K, Zhang J, et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics[J/OL]. Elife, 2013, 2: e00762. doi: 10.7554/eLife.00762.
|
[38] |
Carlson HL, Quinn JJ, Yang YW, et al. LncRNA-HIT functions as an epigenetic regulator of chondrogenesis through its recruitment of p100/CBP complexes[J/OL]. PLoS Genet, 2015, 11(12): e1005680. doi: 10.1038/s41584-020-0407-3.
|
[39] |
Liu Q, Hu XQ, Zhang X, et al.The TMSB4 pseudogene lncRNA functions as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis[J]. Mol Ther, 2016, 24(10): 1726-1733.
|
[40] |
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51(6): 792-806.
|
[41] |
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013,19(2): 141-157.
|
[42] |
Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs[J/OL]. Genome Biol, 2014, 15(7): 409. doi: 10.1186/s13059-014-0409-z.
|
[43] |
Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature,1979,280(5720): 339-340.
|
[44] |
Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons[J]. Cell, 1991,64(3): 607-613.
|
[45] |
Cocquerelle C, Mascrez B, Hetuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993, 7(1): 155-160.
|
[46] |
Boeckel JN, Jae N, Heumuller AW, et al. Identification and characterization of hypoxia-regulated endothelial circular RNA[J]. Circ Res, 2015, 117(10): 884-890.
|
[47] |
Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification[J/OL]. Genome Biol, 2015, 16(1): 4. doi: 10.1186/s13059-014-0571-3.
|
[48] |
Bachmayr-Heyda A, Reiner AT, et al. Correlation of circular RNA abundance with proliferation exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues[J/OL]. Sci Rep, 2015, 5: 8057. doi: 10.1038/srep08057.
|
[49] |
Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway[J]. Oncotarget, 2015,6(8): 6001-6013.
|
[50] |
Yang Y, Fan XJ, Mao MW, et al. Extensive translation of circular RNAs driven by N6-methyladenosine[J]. Cell Res, 2017, 27(5): 626-641.
|
[51] |
Yang YB, Gao XY, Zhang ML, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis[J]. J Natl Cancer Inst, 2018, 110(3): 304-315.
|
[52] |
Nagarjuna RP, Osnat B, Marvin J, et al. Translation of CircRNAs[J]. Mol Cell, 2017, 66(1): 9-21.
|
[53] |
Hsiao KY, Sun HS, Tsai SJ. Circular RNA-new member of noncoding RNA with novel functions[J]. Exp Bol Med, 2017, 242(11): 1136-1141.
|
[54] |
Zhou ZB, Du D, Chen AM, et al. Circular RNA expression profile of articular chondrocytes in an IL-1β-induced mouse model of osteoarthritis[J]. Gene, 2018, 644: 20-26.
|
[55] |
Wu Y, Zhang Y, Zhang Y, et al.CircRNA hsa_circ_0005105 upregulates NAMPT expression and promotes chondrocyte extracellular matrix degradation by sponging miR-26a[J]. Cell BiolInt, 2017, 41(12): 1283-1289.
|
[56] |
Liu Q, Zhang X, Hu XQ, et al. Circular RNA related to the chondrocyte ECM regulates MMP13 expression byfunctioning as a miR-136 sponge in human cartilage degradation[J/OL]. Sci Rep, 2016, 6: 22572. doi: 10.1038/srep22572.
|
[57] |
Liu Q, Zhang X, Hu XQ, et al.Emerging roles of circRNA related to the mechanical stress in human cartilage degradation of osteoarthritis[J]. Mol Ther Nucleic Acids, 2017, 7(4): 223-230.
|