[1] |
Duong V, Oo WM, Ding C, et al. Evaluation and treatment of knee pain: areview[J]. JAMA, 2023, 330(16): 1568-1580.
|
[2] |
中华医学会骨科学分会关节外科学组, 解放军总医院第四医学中心骨科医学部, 国家骨科与运动康复临床医学研究中心. 中国膝骨关节炎非手术治疗专家共识(2023年版) [J/OL]. 中华关节外科杂志(电子版), 2024, 18(2): 151-159.
|
[3] |
Li X, Martinez-Ramos S, Heedge FT, et al. Expression of semaphorin-3A in the joint and role in osteoarthritis[J/OL]. Cell BiochemFunct, 2024, 42(3): e4012. DOI: 10.1002/cbf.4012.
|
[4] |
李鹏飞, 杨永泽, 马国榕, 等. 骨关节炎疼痛机制研究进展 [J]. 国际骨科学杂志, 2024, 45(02): 136-140.
|
[5] |
Miao MZ, Lee JS, Yamada KM, et al. Integrin signalling in joint development, homeostasis and osteoarthritis[J]. Nat Rev Rheumatol, 2024, 20(8): 492-509.
|
[6] |
Hochberg MC, Carrino JA, Schnitzer TJ, et al. Long-term safety and efficacy of subcutaneous tanezumab versus nonsteroidal antiinflammatorydrugs for hip or knee osteoarthritis: arandomized trial[J]. Arthritis Rheumatol, 2021, 73(7): 1167-1177.
|
[7] |
Gavioli E, Mantelli F, Cesta MC, et al. The history of nerve growth factor: from molecule to drug[J/OL]. Biomolecules, 2024, 14(6): 635. DOI: 10.3390/biom14060635.
|
[8] |
王孟玲, 安丙辰. 神经生长因子在骨关节炎关节软骨中的病理生理作用 [J/CD]. 中华关节外科杂志(电子版), 2022, 16(1): 49-54.
|
[9] |
Zhao L, Lai Y, Jiao H, et al. Nerve growth factor receptor limits inflammation to promote remodeling and repair of osteoarthritic joints[J/OL]. Nat Commun, 2024, 15(1): 3225. DOI: 10.1038/s41467-024-47633-6.
|
[10] |
Mei H, Li Z, Lv Q, et al. Sema3A secreted by sensory nerve induces bone formation under mechanical loads[J/OL]. Int J Oral Sci, 2024, 16(1): 5. DOI: 10.1038/s41368-023-00269-6.
|
[11] |
Muschter D, Fleischhauer L, Taheri S, et al. Sensory neuropeptides are required for bone and cartilage homeostasis in a murine destabilization-induced osteoarthritis model[J/OL]. Bone, 2020, 133: 115181.DOI: 10.1016/j.bone.2019.115181.
|
[12] |
Hildebrandt A, Dietrich T, Weber J, et al. The dual pro-inflammatory and bone-protective role of calcitonin gene-related peptide alpha in age-related osteoarthritis[J/OL]. Arthritis Res Ther, 2023, 25(1): 244. DOI: 10.1186/s13075-023-03215-3.
|
[13] |
Cui Z, Wu H, Xiao Y, et al. Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation[J/OL]. Bone Res, 2022, 10(1): 58. DOI: 10.1038/s41413-022-00229-6.
|
[14] |
Domínguez-Romero ME, Slater PG. Unraveling axon guidance during axotomy and regeneration[J/OL]. Int J Mol Sci, 2021, 22(15): 8344. DOI: 10.3390/ijms22158344.
|
[15] |
Yang X, Ma L, Zhang J, et al. Hypofucosylation of Unc5b regulated by Fut8 enhances macrophage emigration and prevents atherosclerosis[J/OL]. Cell Biosci, 2023, 13(1): 13. DOI: 10.1186/s13578-023-00959-y.
|
[16] |
NoristaniHN. Intrinsic regulation of axon regeneration after spinal cord injury: Recent advances and remaining challenges[J/OL]. Exp Neurol, 2022, 357: 114198. DOI: 10.1016/j.expneurol.2022.114198.
|
[17] |
Zhu K, Wang H, Ye K, et al. Netrin-1 signaling pathway mechanisms in neurodegenerative diseases[J]. Neural Regen Res, 2025, 20(4): 960-972.
|
[18] |
Maruyama K, Kawasaki T, Hamaguchi M, et al. Bone-protective functions of netrin 1 protein[J]. J Biol Chem, 2016, 291(46): 23854-23868.
|
[19] |
Ji S, Zhao B, Gao Y, et al. Cinnamaldehyde attenuates streptozocin-induced diabetic osteoporosis in a rat model by modulating netrin-1/DCC-UNC5B signal transduction[J/OL]. Front Pharmacol, 2024, 15: 1367806. DOI: 10.3389/fphar.2024.1367806.
|
[20] |
Mediero A, Ramkhelawon B, Wilder T, et al. Netrin-1 is highly expressed and required in inflammatory infiltrates in wear particle-induced osteolysis[J]. Ann Rheum Dis, 2016, 75(9): 1706-1713.
|
[21] |
Zhu S, Zhu J, Zhen G, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain[J]. J Clin Invest, 2019, 129(3): 1076-1093.
|
[22] |
Mediero A, Ramkhelawon B, Perez-Aso M, et al. Netrin-1 is a critical autocrine/paracrine factor for osteoclast differentiation[J]. J Bone Miner Res, 2015, 30(5): 837-854.
|
[23] |
Sato T, Kokabu S, Enoki Y, et al. Functional roles of netrin-1 in osteoblast differentiation[J]. In Vivo, 2017, 31(3): 321-328.
|
[24] |
Guzmán-Palma P, Contreras EG, Mora N, et al. Slit/robosignaling regulates multiple stages of the development of the Drosophila motion detection system[J/OL]. Front Cell Dev Biol, 2021, 9: 612645. DOI: 10.3389/fcell.2021.612645.
|
[25] |
Kellermeyer R, HeydmanLM, Gillis T, et al. Proteolytic cleavage of Slit by the Tolkin protease converts an axon repulsion cue to an axon growth cue in vivo[J/OL]. Development, 2020, 147(20): dev196055. DOI: 10.1242/dev.196055.
|
[26] |
Liu X, Zhang P, Gu Y, et al. Type H vessels: functions in bone development and diseases[J/OL]. Front Cell Dev Biol, 2023, 11: 1236545.DOI: 10.3389/fcell.2023.1236545.
|
[27] |
Xu R, Yallowitz A, Qin A, et al. Targeting skeletal endothelium to ameliorate bone loss [J]. Nat Med, 2018, 24(6): 823-833.
|
[28] |
Wang YN, Tang Y, He Z, et al. Slit3 secreted from M2-like macrophages increases sympathetic activity and thermogenesis in adipose tissue[J]. Nat Metab, 2021, 3(11): 1536-1551.
|
[29] |
Li Z, Shi B, Li N, et al. Bone controls browning of white adipose tissue and protects from diet-induced obesity through Schnurri-3-regulated SLIT2 secretion[J/OL]. Nat Commun, 2024, 15(1): 6697. DOI: 10.1038/s41467-024-51155-6.
|
[30] |
Park SJ, Lee JY, Lee SH, et al. SLIT2 inhibits osteoclastogenesis and bone resorption by suppression of Cdc42 activity[J]. BiochemBiophys Res Commun, 2019, 514(3): 868-874.
|
[31] |
Wang L, Zheng J, Pathak JL, et al. SLIT2 overexpression in periodontitis intensifies inflammation and alveolar bone loss, possibly via the activation of MAPK pathway[J/OL]. Front Cell Dev Biol, 2020, 8: 593. DOI: 10.3389/fcell.2020.00593.
|
[32] |
Su H, Yang Y, Lv W, et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-382 promotes osteogenesis in osteoblast via regulation of SLIT2[J/OL]. J Orthop Surg Res, 2023, 18(1): 185. DOI: 10.1186/s13018-023-03667-y.
|
[33] |
Svensson KJ, Long JZ, JedrychowskiMP, et al. A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function[J]. Cell Metab, 2016, 23(3): 454-466.
|
[34] |
Kim BJ, Lee YS, Lee SY, et al. Osteoclast-secreted SLIT3 coordinates bone resorption and formation[J]. J Clin Invest, 2018, 128(4): 1429-1441.
|
[35] |
Li N, Inoue K, Sun J, et al. Osteoclasts are not a source of SLIT3[J/OL]. Bone Res, 2020, 8: 11. DOI: 10.1038/s41413-020-0086-3.
|
[36] |
Zhu Y, Su SA, Shen J, et al. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies[J/OL]. iScience, 2024, 27(8):110556.DOI: 10.1016/j.isci.2024.110556.
|
[37] |
Zhu S, Liu Z, Yuan C, et al. Bidirectional ephrinB2-EphB4 signaling regulates the osteogenic differentiation of canine periodontal ligament stem cells[J]. Int J Mol Med, 2020, 45(3): 897-909.
|
[38] |
Stiffel VM, Thomas A, Rundle CH, et al. The EphA4 signaling is anti-catabolic in synoviocytes but pro-anabolic in articularchondrocytes[J]. Calcif Tissue Int, 2020, 107(6): 576-592.
|
[39] |
Arthur A, Gronthos S. Eph-ephrin signaling mediates cross-talk within the bone microenvironment[J/OL]. Front Cell Dev Biol, 2021, 9: 598612.DOI: 10.3389/fcell.2021.598612.
|
[40] |
Zhu S, Chen W, Masson A, et al. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis[J/OL]. Cell Discov, 2024, 10(1): 71. DOI: 10.1038/s41421-024-00689-6.
|
[41] |
Xu H, Wang W, Liu X, et al. Targeting strategies for bone diseases: signaling pathways and clinical studies[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 202. DOI: 10.1038/s41392-023-01467-8.
|
[42] |
Stiffel VM, Rundle CH, Sheng MH, et al. A novel EphA4 signaling-based therapeutic strategy for osteoarthritis in mice[J]. J Bone Miner Res, 2022, 37(4): 660-674.
|
[43] |
Piffko A, Uhl C, Vajkoczy P, et al. EphrinB2-EphB4 signaling in neurooncological disease[J/OL]. Int J Mol Sci, 2022, 23(3): 1679. DOI: 10.3390/ijms23031679.
|
[44] |
Bao Z, Wang P, Li Y, et al. EphrinB2-mediated chondrocyte autophagy induces post-traumatic arthritis via rupture of cartilage homeostasis[J/OL]. J Cell Mol Med, 2024, 28(18): e70095. DOI: 10.1111/jcmm.70095.
|
[45] |
Wu W, Zhang J, Chen Y, et al. Genes in axonal regeneration[J]. Mol Neurobiol, 2024, 61(10): 7431-7447.
|
[46] |
Wu K, Huang D, Huang X. The effects of semaphorin 3A in bone and cartilage metabolism: fundamental mechanism and clinical potential[J/OL]. Front Cell Dev Biol, 2023, 11: 1321151.DOI: 10.3389/fcell.2023.1321151.
|
[47] |
Stöckl S, Reichart J, Zborilova M, et al. Semaphorin 3A-neuropilin-1 signaling modulates MMP13 expression in human osteoarthritic chondrocytes[J/OL]. Int J Mol Sci, 2022, 23(22): 14180. DOI: 10.3390/ijms232214180.
|
[48] |
Sumi C, Hirose N, Yanoshita M, et al. Semaphorin 3A inhibits inflammation in chondrocytes under excessive mechanical stress[J/OL]. Mediators Inflamm, 2018, 2018: 5703651.DOI: 10.1155/2018/5703651.
|
[49] |
Fukuda T, Takeda S, Xu R, et al. Sema3A regulates bone-mass accrual through sensory innervations[J]. Nature, 2013, 497(7450): 490-493.
|
[50] |
Shen M, Zhou C, Tian Y, et al. Effects of Semaphorin3A on the growth of sensory and motor neurons[J/OL]. Exp Cell Res, 2023, 424(2): 113506.DOI: 10.1016/j.yexcr.2023.113506.
|
[51] |
Sagar DR, Ashraf S, Xu L, et al. Osteoprotegerin reduces the development of pain behaviour and joint pathology in a model of osteoarthritis[J]. Ann Rheum Dis, 2014, 73(8): 1558-1565.
|
[52] |
Gupta S, Viotti A, Eichwald T, et al. Navigating the blurred path of mixed neuroimmune signaling[J]. J Allergy Clin Immunol, 2024, 153(4): 924-938.
|