切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 71 -76. doi: 10.3877/cma.j.issn.1674-134X.2023.01.010

综述

髌股关节炎病因相关促炎因子研究进展
王宇杰1, 方雨婷1, 张璇1, 姚五平2, 柳直3,()   
  1. 1. 730000 兰州,甘肃中医药大学
    2. 730050 兰州,甘肃省中医院关节骨二科
    3. 730050 兰州,甘肃省中医院门诊部
  • 收稿日期:2021-10-14 出版日期:2023-02-01
  • 通信作者: 柳直
  • 基金资助:
    甘肃中医药管理局项目(GZKP-2020-18); 兰州市科技局医疗卫生专项(2021-1-87); 中医药传承创新平台建设项目院内科研子项目(甘卫中医函【2020】203号)

Research progress on etiology of patellofemoral arthritis based on proinflammatory cytokines

Yujie Wang1, Yuting Fang1, Xuan Zhang1, Wuping Yao2, Zhi Liu3,()   

  1. 1. Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
    2. The Second Department of Joint Orthopedics, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, China
    3. Outpatient Department of Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, China
  • Received:2021-10-14 Published:2023-02-01
  • Corresponding author: Zhi Liu
引用本文:

王宇杰, 方雨婷, 张璇, 姚五平, 柳直. 髌股关节炎病因相关促炎因子研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(01): 71-76.

Yujie Wang, Yuting Fang, Xuan Zhang, Wuping Yao, Zhi Liu. Research progress on etiology of patellofemoral arthritis based on proinflammatory cytokines[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(01): 71-76.

随着社会的老龄化及人们生活方式的改变,髌股关节炎发病率目前逐渐上升,大部分膝关节炎认为是髌骨与股骨之间的病变。本文回顾以往对于髌股关节炎的发病机制的相关文献,着重从细胞因子水平阐述相关病理变化,论述前列腺素E2(PGE2)、白细胞介素(IL)-1β、IL-6、肿瘤坏死因子-α(TNF-α)、基质金属蛋白酶(MMPs)等相关促炎因子对于髌股关节炎的病因及发病机制之间的相关性,为髌股关节炎的诊治及更进一步的研究提供理论方向。

With an aging society and changes in lifestyles, the incidence of patellofemoral arthritis is currently increasing. Most of the knee arthritis is considered as a lesion between the patella and the femur. This article reviewed the previous literatures on the pathogenesis of patellofemoral arthritis, focused on the related pathological changes from the level of cytokines and discussed prostaglandin E2(PGE2), interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α, matrix metalloproteinases (MMPs) and other related inflammatory factors that associate with the etiology and pathogenesis of patellofemoral arthritis. It may provide theoretical directions in diagnosis and treatment of patellofemoral arthritis as well as for further research.

[1]
Li Z, Liu Q, Zhao C, et al. High prevalence of patellofemoral osteoarthritis in China: a multi-center population-based osteoarthritis study[J]. Clin Rheumatol, 2020, 39(12): 3615-3623.
[2]
Kolasinski SL, Neogi T, Hochberg MC, et al. 2019 American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee[J]. Arthritis Care Res (Hoboken), 2020, 72(2): 149-162.
[3]
Johnson DS, Turner PG. Replacement for patellofemoral arthritis[J]. Knee, 2019, 26(6): 1166-1170.
[4]
Raman S, FitzGerald U, Murphy JM. Interplay of inflammatory mediators with epigenetics and cartilage modifications in osteoarthritis[J/OL]. Front Bioeng Biotechnol, 2018, 6: 22. DOI: 10.3389/fbioe.2018.00022.
[5]
Yao N, Chen N, Xu X,et al. Protective effect of Shenmai injection on knee articular cartilage of osteoarthritic rabbits and IL-1β-stimulated human chondrocytes[J]. Exp Ther Med, 2017, 13(6):3013-3020.
[6]
Bai H, Zhang Z, Li Y, et al. L-Theanine reduced the development of knee osteoarthritis in rats via its anti-inflammation and anti-matrix degradation actions: in vivo and in vitro study[J/OL]. Nutrients, 2020, 12(7):1988. DOI: 10.3390/nu12071988.
[7]
Timur U, Caron M, Bastiaansen-Jenniskens Y, et al. PGE2 and PGF2α are secreted by the osteoarthritic infrapatellar fat pad and their release can be modulated by celecoxib[J/OL]. Osteoarthr Cartil, 2016, 24: S339. DOI: 10.1016/j.joca.2016.01.608.
[8]
Wang C, Gao Y, Zhang Z, et al. Safflower yellow alleviates osteoarthritis and prevents inflammation by inhibiting PGE2 release and regulating NF-κB/SIRT1/AMPK signaling pathways[J/OL]. Phytomedicine, 2020, 78: 153305. DOI: 10.1016/j.phymed.2020.153305.
[9]
Zhu J, Zhen G, An S, et al. Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis[J/OL]. Elife, 2020, 9: e57656. DOI: 10.7554/eLife.57656.
[10]
Eymard F, Pigenet A, Citadelle D, et al. Induction of an inflammatory and prodegradative phenotype in autologous fibroblast-like synoviocytes by the infrapatellar fat pad from patients with knee osteoarthritis[J]. Arthritis Rheumatol, 2014, 66(8): 2165-2174.
[11]
Hosseinzadeh A, Kamrava SK, Joghataei MT, et al. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin[J]. J Pineal Res, 2016, 61(4): 411-425.
[12]
Liao CR, Wang SN, Zhu SY, et al. Advanced oxidation protein products increase TNF-α and IL-1β expression in chondrocytes via NADPH oxidase 4 and accelerate cartilage degeneration in osteoarthritis progression[J/OL]. Redox Biol, 2020, 28: 101306. DOI: 10.1016/j.redox.2019.101306.
[13]
Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β signaling in osteoarthritis-chondrocytes in focus[J]. Cell Signal, 2019, 53: 212-223.
[14]
Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications[J/OL]. Arthritis Res Ther, 2017, 19(1): 18. DOI: 10.1186/s13075-017-1229-9.
[15]
Chien SY, Tsai CH, Liu SC, et al. Noggin inhibits IL-1β and BMP-2 expression, and attenuates cartilage degeneration and subchondral bone destruction in experimental osteoarthritis[J/OL]. Cells, 2020, 9(4): 927. DOI: 10.3390/cells9040927.
[16]
Sun FF, Hu PF, Xiong Y, et al. Tricetin protects rat chondrocytes against IL-1β-induced inflammation and apoptosis[J/OL]. Oxid Med Cell Longev, 2019, 2019: 4695381. DOI: 10.1155/2019/4695381.
[17]
Mailhot B, Christin M, Tessandier N, et al. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases[J]. J Exp Med, 2020, 217(9): e20191430. DOI: 10.1084/jem.20191430.
[18]
Fleischmann RM, Bliddal H, Blanco FJ, et al. A phase II trial of lutikizumab, an anti-interleukin-1α/β dual variable domain immunoglobulin, in knee osteoarthritis patients with synovitis[J]. Arthritis Rheumatol, 2019, 71(7): 1056-1069.
[19]
Schieker M, Conaghan PG, Mindeholm L, et al. Effects of interleukin-1β inhibition on incident hip and knee replacement: exploratory analyses from a randomized, double-blind, placebo-controlled trial[J]. Ann Intern Med, 2020, 173(7): 509-515.
[20]
Zhang C, Zhang Z, Chang Z, et al. miR-193b-5p regulates chondrocytes metabolism by directly targeting histone deacetylase 7 in interleukin-1β-induced osteoarthritis[J]. J Cell Biochem, 2019, 120(8): 12775-12784.
[21]
van Dalen SCM, Blom AB, Slöetjes AW, et al. Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis[J]. Osteoarthr Cartil, 2017, 25(3): 385-396.
[22]
Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis[J/OL]. Mediators Inflamm, 2014, 2014: 561459. DOI: 10.1155/2014/561459.
[23]
Wu MH, Tsai CH, Huang YL, et al. Visfatin promotes IL-6 and TNF-α production in human synovial fibroblasts by repressing miR-199a-5p through ERK, p38 and JNK signaling pathways[J/OL]. Int J Mol Sci, 2018, 19(1): 190. DOI: 10.3390/ijms19010190.
[24]
Hermann W, Lambova S, Muller-Ladner U. Current treatment options for osteoarthritis[J]. Curr Rheumatol Rev, 2018, 14(2): 108-116.
[25]
Liu S, Cao C, Zhang Y, et al. PI3K/Akt inhibitor partly decreases TNF-α-induced activation of fibroblast-like synoviocytes in osteoarthritis[J/OL]. J Orthop Surg Res, 2019, 14(1): 425. DOI: 10.1186/s13018-019-1394-4.
[26]
Larsson S, Englund M, Struglics A, et al. Interleukin-6 and tumor necrosis factor alpha in synovial fluid are associated with progression of radiographic knee osteoarthritis in subjects with previous meniscectomy[J]. Osteoarthritis Cartilage, 2015, 23(11): 1906-1914.
[27]
Yang L, Fan C, Shu T, et al. Punicalin alleviates TNF-α- and IL-1β-induced chondrocyte dysfunction and cartilage metabolism via mediating FOXO3 signaling axis[J/OL]. J Food Biochem, 2021: e13755.DOI: 10.1111/jfbc.13755.
[28]
Masutani T, Tanaka YT, Kojima H, et al. Cynaropicrin is dual regulator for both degradation factors and synthesis factors in the cartilage metabolism[J]. Life Sci, 2016, 158: 70-77.
[29]
Sun EY, Fleck AKM, Abu-Hakmeh AE, et al. Cartilage metabolism is modulated by synovial fluid through metalloproteinase activity[J]. Ann Biomed Eng, 2018, 46(6): 810-818.
[30]
Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review[J/OL]. Life Sci, 2019, 234: 116786. DOI: 10.1016/j.lfs.2019.116786.
[31]
Hu Q, Ecker M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis[J/OL]. Int J Mol Sci, 2021, 22(4): 1742. DOI: 10.3390/ijms22041742.
[32]
Luo S, Shi Q, Chen J, et al. Expression and significance of MMPs in synovial fluid, serum and PBMC culture supernatant stimulated by LPS in osteoarthritis patients with or without diabetes[J]. 2019, 127(4): 195-202.
[33]
Chen GY, Chen JQ, Liu XY, et al. Total flavonoids of rhizoma drynariae restore the MMP/TIMP balance in models of osteoarthritis by inhibiting the activation of the NF-κB and PI3K/AKT pathways[J/OL]. Evid Based Complement Alternat Med, 2021, 2021: 6634837. DOI: 10.1155/2021/6634837.
[34]
Park C, Jeong JW, Lee DS, et al. Sargassum serratifolium extract attenuates interleukin-1β-induced oxidative stress and inflammatory response in chondrocytes by suppressing the activation of NF-κB, p38 MAPK, and PI3K/Akt[J/OL]. Int J Mol Sci, 2018, 19(8): 2308. DOI: 10.3390/ijms19082308.
[35]
Kim MH, Choi Y, Ahn KS, et al. Gumiganghwal-Tang ameliorates cartilage destruction via inhibition of matrix metalloproteinase[J/OL]. J Ethnopharmacol, 2020, 261: 113074. DOI: 10.1016/j.jep.2020.113074.
[36]
Thorson C, Galicia K, Burleson A, et al. Matrix metalloproteinases and their inhibitors and proteoglycan 4 in patients undergoing total joint arthroplasty[J/OL]. Clin Appl Thromb Hemost, 2019, 25: 1076029619828113. DOI: 10.1177/1076029619828113.
[37]
Quintans-Júnior LJ, Gandhi SR, Passos FRS, et al. Dereplication and quantification of the ethanol extract of Miconia albicans (Melastomaceae) by HPLC-DAD-ESI-/ MS/MS, and assessment of its anti-hyperalgesic and anti-inflammatory profiles in a mice arthritis-like model: evidence for involvement of TNF-α,IL-1β and IL-6[J/OL]. J Ethnopharmacol, 2020, 258: 112938. DOI: 10.1016/j.jep.2020.112938.
[38]
Oh HM, Lee SW, Yun BR, et al. Vigna angularis inhibits IL-6-induced cellular signalling and ameliorates collagen-induced arthritis[J]. Rheumatology (Oxford), 2014, 53(1): 56-64.
[39]
Xie C, Chen Q. Adipokines: new therapeutic target for osteoarthritis?[J/OL]. Curr Rheumatol Rep, 2019, 21(12): 71. DOI: DOI: 10.1007/s11926-019-0868-z.
[40]
Wang ZW, Chen L, Hao XR, et al. Elevated levels of interleukin-1β,interleukin-6, tumor necrosis factor-α and vascular endothelial growth factor in patients with knee articular cartilage injury[J]. World J Clin Cases, 2019, 7(11): 1262-1269.
[41]
宋娜,蒋金金,马琪,等. 从生物力学角度探讨髌股关节炎的病因[J]. 中华物理医学与康复杂志2020, 42(5): 477-480.
[42]
国家老年疾病临床医学研究中心(湘雅医院), 中华医学会骨科学分会关节外科学组. 中国髌股关节骨关节炎诊疗指南(2020年版)[J]. 中华骨科杂志2020, 40(18): 1227-1234.
[43]
张瑜,刘登辉,徐卫东,等. 女性单纯髌股关节炎严重程度的危险因素分析[J/CD]. 中华关节外科杂志(电子版), 2016, 10(1): 32-36.
[44]
黄群,陈明,董启榕,等. 髌股关节置换术与全膝关节置换术治疗单纯髌股关节骨关节炎的Meta分析[J/CD]. 中华关节外科杂志(电子版), 2013, 7(4): 491-498.
[45]
王啸,韩旭,史小涛,等. 髌股关节退变对膝关节内侧单髁置换术后疗效的影响[J/CD]. 中华关节外科杂志(电子版), 2021, 15(3): 373-378.
[46]
雷光华. 髌股关节骨关节炎的诊疗现状[J]. 医学临床研究2020, 37(5): 641-645.
[47]
徐文弟,朱勋兵,韩冠生. 髌股关节炎诊治新进展[J]. 中华全科医学2017, 15(6): 1032-1036.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 黄子荣, 罗渝鑫, 杨文瀚, 陈小虎, 谢环宇, 朱伟民. 前交叉韧带重建对膝关节稳定性影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 847-854.
[3] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[4] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[5] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[6] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[7] 李辉, 吴奇, 张子琦, 张晗, 王仿, 许鹏. 日间全膝关节置换术早期疗效及标准化流程探索[J]. 中华关节外科杂志(电子版), 2023, 17(06): 889-892.
[8] 邓华梅, 袁札根, 曾德荣, 潘珊珊, 张葆青, 欧爱华, 曹学伟. 全膝关节置换术中气压止血带应用效果与影响因素分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 788-794.
[9] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[10] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[11] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[12] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[13] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[14] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
[15] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
阅读次数
全文


摘要