[1] |
Kamath AF, Ong KL, Lau E, et al. Quantifying the burden of revision total joint arthroplasty for periprosthetic infection[J]. J Arthroplasty, 2015, 30(9): 1492-1497.
|
[2] |
张倜,郑充,马海洋,等.髋关节置换术早期失败的原因分析[J].中华医学杂志,2014,94(48):3836-3838.
|
[3] |
张倜,郑充,马海洋,等.髋关节置换中期失败的原因分析[J].中华医学杂志,2015,95(3):214-216.
|
[4] |
黄自强,孙长鲛.膝关节置换患者手术失败原因的分析[J].中华医学杂志,2015,95(20):1606-1608.
|
[5] |
Izakovicova P, Borens O, Trampuz A. Periprosthetic joint infection: current concepts and outlook[J]. EFORT Open Rev, 2019, 4(7): 482-494.
|
[6] |
Kurtz SM, Lau E, Watson H, et al. Economic burden of periprosthetic joint infection in the United States[J]. J Arthroplasty, 2012, 27(8 Suppl): 61-65.e1.
|
[7] |
Akindolire J, Morcos MW, Marsh JD, et al. The economic impact of periprosthetic infection in total hip arthroplasty[J]. Can J Surg, 2020, 63(1): E52-E56.
|
[8] |
Engesaeter LB, Espehaug B, Sa L, et al. Does cement increase the risk of infection in primary total hip arthroplasty? Revision rates in 56,275 cemented and uncemented primary THAs followed for 0-16 years in the Norwegian Arthroplasty Register[J]. Acta Orthop, 2006, 77(3): 351-358.
|
[9] |
Parvizi J, Saleh KJ, Ragland PS, et al. Efficacy of antibiotic-impregnated cement in total hip replacement[J]. Acta Orthop, 2008, 79(3): 335-341.
|
[10] |
Anagnostakos K. Therapeutic use of antibiotic-loaded bone cement in the treatment of hip and knee joint infections[J]. J Bone Jt Infect, 2017, 2(1): 29-37.
|
[11] |
Cui Q, Wm M, Shields JS, et al. Antibiotic-impregnated cement spacers for the treatment of infection associated with total hip or knee arthroplasty[J]. J Bone Joint Surg Am, 2007, 89(4): 871-882.
|
[12] |
System N. National nosocomial infections surveillance (NNIS) system report, data summary from January 1990-May 1999, issued June 1999. A report from the NNIS system[J]. Am J Infect Control, 1999, 27(6): 520-532.
|
[13] |
Panlilio AL, Culver DH, Gaynes RP, et al. Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975-1991[J]. Infect Control Hosp Epidemiol, 1992, 13(10): 582-586.
|
[14] |
Klevens RM, Edwards JR, Tenover FC, et al. Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003[J]. Clin Infect Dis, 2006, 42(3): 389-391.
|
[15] |
Sawada M, Oe K, Hirata M, et al. Linezolid versus daptomycin treatment for periprosthetic joint infections: a retrospective cohort study[J]. J Orthop Surg Res, 2019, 14(1): 334-341.
|
[16] |
孙长鲛,周勇刚,柴伟,等.髋关节置换术后感染的微生物特点及药敏分析[J].中华医学杂志,2014,94(21):1657-1660.
|
[17] |
孙长鲛,柴伟,潘勇卫,等.膝关节置换术后感染的微生物学及药敏分析[J].中华医学杂志,2014,94(45):3575-3578.
|
[18] |
Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections[J]. N Engl J Med, 2004, 351(16): 1645-1654.
|
[19] |
Shahpari O, Mousavian A, Elahpour N, et al. The use of antibiotic impregnated cement spacers in the treatment of infected total joint replacement: challenges and achievements[J]. Arch Bone Jt Surg, 2020, 8(1): 11-20.
|
[20] |
孙长鲛,周勇刚.抗菌药物骨水泥在关节置换术中的研究进展[J].中华医院感染学杂志,2012,22(12):2711-2714.
|
[21] |
孙长鲛,周勇刚.关节置换术后耐甲氧西林金黄色葡萄球菌感染的研究进展[J].中华医院感染学杂志,2014,24(12):3118-3120.
|
[22] |
Hendriks JG, Van Horn JR, Van Der Mei HC, et al. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection[J]. Biomaterials, 2004, 25(3): 545-556.
|
[23] |
Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms[J]. Int J Med Microbiol, 2002, 292(2): 107-113.
|
[24] |
Hope PG, Kristinsson KG, Norman P, et al. Deep infection of cemented total hip arthroplasties caused by coagulase-negatives taphylococci[J]. J Bone Joint Surg Br, 1989, 71(5): 851-855.
|
[25] |
Leibovici L, Vidal L, Paul M. Aminoglycoside drugs in clinical practice: an evidence-based approach[J]. J Antimicrob Chemother, 2009, 63(2): 246-251.
|
[26] |
Rybak MJ, Lomaestro BM, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American Society of Health-System Pharmacists,the Infectious Diseases Society of America,and the Society of Infectious Diseases Pharmacists[J]. Pharmacotherapy, 2009, 29(11): 1275-1279.
|
[27] |
Kollef MH. Limitations of vancomycin in the management of resistant staphylococcal infections[J]. Clin Infect Dis, 2007, 45 Suppl 3: S191-S195.
|
[28] |
Cacciola G, De Meo F, Cavaliere P. Mechanical and elution properties of G3 Low Viscosity bone cement loaded up to three antibiotics[J]. J Orthop, 2018, 15(4): 1004-1007.
|
[29] |
Hidayat LK, Hsu DI, Quist R, et al. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity[J]. Arch Intern Med, 2006, 166(19): 2138-2144.
|
[30] |
Haddad FS, Masri BA, Campbell D, et al. The PROSTALAC functional spacer in two-stage revision for infected knee replacements. Prosthesis of antibiotic-loaded acrylic cement[J]. J Bone Joint Surg Br, 2000, 82(6): 807-812.
|
[31] |
Castanheira M, Jones RN, Sader HS. Update of the in vitro activity of daptomycin tested against 6710 Gram-positive cocci isolated in North America (2006)[J]. Diagn Microbiol Infect Dis, 2008, 61(2): 235-239.
|
[32] |
Wang G, Hindler JF, Ward KW, et al. Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period[J]. J Clin Microbiol, 2006, 44(11): 3883-3886.
|
[33] |
Richelsoph KC, Webb ND, Haggard WO. Elution behavior of daptomycin-loaded calcium sulfate pellets: a preliminary study[J]. Clin Orthop Relat Res, 2007, 461: 68-73.
|
[34] |
Rouse MS, Piper KE, Jacobson M, et al. Daptomycin treatment of Staphylococcus aureus experimental chronic osteomyelitis[J]. J Antimicrob Chemother, 2006, 57(2): 301-305.
|
[35] |
Diekema DJ, Pfaller MA, Schmitz FJ, et al. Survey of infections due to staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999 [J]. Clin Infect Dis, 2001, 32 Suppl 2: S114-132.
|
[36] |
Akins RL, Haase KK. Gram-positive resistance:pathogens,implications,and treatment options:insights from the Society of Infectious Diseases Pharmacists[J]. Pharmacotherapy, 2005, 25(7): 1001-1010.
|
[37] |
Appelbaum PC. The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus[J]. Clin Microbiol Infect, 2006, 12(Suppl 1): 16-23.
|
[38] |
Salzer W. Antimicrobial-resistant gram-positive bacteria in PD peritonitis and the newer antibiotics used to treat them[J]. Perit Dial Int, 2005, 25(4): 313-319.
|
[39] |
Howden BP, Davies JK, Johnson PD, et al. Reduced vancomycin susceptibility in staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications[J]. Clin Microbiol Rev, 2010, 23(1): 99-139.
|
[40] |
Adams B, Roboubi B, Henshaw R. Acute onset of vancomycin anaphylaxis with disseminated intravascular coagulation in an orthopedic patient despite prior repeated exposure[J]. Am J Orthop (Belle Mead NJ), 2015, 44(12): E523-E525.
|
[41] |
Cobo J, Miguel LG, Euba G, et al. Early prosthetic joint infection: outcomes with debridement and implant retention followed by antibiotic therapy[J]. Clin Microbiol Infect, 2011, 17(11): 1632-1637.
|
[42] |
Lourtet-Hascoët J, Félicé MP, Bicart-See A, et al. Species and antimicrobial susceptibility testing of coagulase-negative staphylococci in periprosthetic joint infections[J]. Epidemiol Infect, 2018, 146(14): 1771-1776.
|
[43] |
Eriksson HK, Ahadpour D, Hailer NP, et al. Linezolid in the treatment of periprosthetic joint infection caused by coagulase-negative staphylococci[J]. Infect Dis (Lond), 2019, 51(9): 683-690.
|
[44] |
Armstrong MS, Spencer RF, Cunningham JL, et al. Mechanical characteristics of antibiotic-laden bone cement[J]. Acta Orthop Scand, 2002, 73(6): 688-690.
|
[45] |
Gálvez-López R, Peña-Monje A, Antelo-Lorenzo R, et al. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement[J]. Diagn Microbiol Infect Dis, 2014, 78(1): 70-74.
|
[46] |
Joseph TN, Chen AL, Di Cesare PE. Use of antibiotic-impregnated cement in total joint arthroplasty[J]. J Am Acad Orthop Surg, 2003, 11(1): 38-47.
|
[47] |
Paz E, Sanz-Ruiz P, Abenojar J, et al. Evaluation of elution and mechanical properties of high-dose antibiotic-loaded bone cement: comparative " in vitro" study of the influence of vancomycin and cefazolin[J]. J Arthroplasty, 2015, 30(8): 1423-1429.
|
[48] |
Fink B, Vogt S, Reinsch M, et al. Sufficient release of antibiotic by a spacer 6 weeks after implantation in two-stage revision of infected hip prostheses[J]. Clin Orthop Relat Res, 2011, 469(11): 3141-3147.
|
[49] |
孙长鲛,柴伟,潘勇卫,等. 利奈唑胺骨水泥在关节置换术后感染治疗中应用的系列探索研究之一——利奈唑胺骨水泥的物理、力学性能研究[J/CD]. 中华关节外科杂志(电子版), 2014,8(3):55-58.
|
[50] |
Azuara G, García-García J, Ibarra B, et al. Experimental study of the application of a new bone cement loaded with broad spectrum antibiotics for the treatment of bone infection[J]. Rev Esp Cir Ortop Traumatol, 2019, 63(2): 95-103.
|
[51] |
Anguita-Alonso P, Rouse MS, Piper KE, et al. Comparative study of antimicrobial release kinetics from polymethylmethacrylate[J]. Clin Orthop Relat Res, 2006, 445: 239-244.
|
[52] |
Anagnostakos K, Kelm J, Grün S, et al. Antimicrobial properties and elution kinetics of linezolid-loaded hip spacers in vitro[J]. J Biomed Mater Res B Appl Biomater, 2008, 87(1): 173-178.
|
[53] |
Ethell MT, Bennett RA, Brown MP, et al. In vitro elution of gentamicin, amikacin, and ceftiofur from polymethylmethacrylate and hydroxyapatite cement[J]. Vet Surg, 2000, 29(5): 375-382.
|
[54] |
Bertazzoni Minelli E, Caveiari C, Benini A. Release of antibiotics from polymethylmethacrylate cement[J]. J Chemother, 2002, 14(5): 492-500.
|
[55] |
Jackson J, Leung F, Duncan C, et al. The use of bone cement for the localized, controlled release of the antibiotics vancomycin, linezolid, or fusidic acid: effect of additives on drug release rates and mechanical strength[J]. Drug Deliv Transl Res, 2011, 1(2): 121-131.
|
[56] |
Mclaren AC, Mclaren SG, Smeltzer M. Xylitol and glycine fillers increase permeability of PMMA to enhance elution of daptomycin[J]. Clin Orthop Relat Res, 2006, 451: 25-28.
|
[57] |
Mclaren AC, Nelson CL, Mclaren SG, et al. The effect of glycine filler on the elution rate of gentamicin from acrylic bone cement: a pilot study[J]. Clin Orthop Relat Res, 2004, (427): 25-27.
|
[58] |
Weiss BD, Weiss EC, Haggard WO, et al. Optimized elution of daptomycin from polymethylmethacrylate beads[J]. Antimicrob Agents Chemother, 2009, 53(1): 264-266.
|
[59] |
Parra-Ruíz FJ, González-Gómez A, Fernández-Gutiérrez M, et al. Development of advanced biantibiotic loaded bone cement spacers for arthroplasty associated infections[J]. Int J Pharm, 2017, 522(1/2): 11-20.
|
[60] |
Rodriguez-Martinez JM, Ballesta S, Garcia I, et al. Activity and penetration of linezolid and vancomycin against staphylococcus epidermidis biofilms][J]. Enferm Infecc Microbiol Clin, 2007,25(7): 425-428.
|
[61] |
Balato G, Roscetto E, Vollaro A, et al. Bacterial biofilm formation is variably inhibited by different formulations of antibiotic-loaded bone cement in vitro[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(6): 1943-1952.
|
[62] |
Holmberg A, Rasmussen M. Antibiotic regimens with rifampicin for treatment of Enterococcus faecium in biofilms[J]. Int J Antimicrob Agents, 2014, 44(1): 78-80.
|