切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 37 -43. doi: 10.3877/cma.j.issn.1674-134X.2022.01.006

综述

具有骨免疫调节性能的骨科生物材料研究进展
柴浩卜1, 王俏杰1, 张先龙1,()   
  1. 1. 200233 上海交通大学附属第六人民医院骨科
  • 收稿日期:2021-08-21 出版日期:2022-02-01
  • 通信作者: 张先龙

Research progress of orthopedic biomaterials with bone immunomodulatory properties

Haobu Chai1, Qiaojie Wang1, Xianlong Zhang1,()   

  1. 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
  • Received:2021-08-21 Published:2022-02-01
  • Corresponding author: Xianlong Zhang
引用本文:

柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.

Haobu Chai, Qiaojie Wang, Xianlong Zhang. Research progress of orthopedic biomaterials with bone immunomodulatory properties[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(01): 37-43.

近年来,各种生物材料在骨科的应用越来越多,大多数骨科生物材料的研究主要关注其直接促成骨作用,却忽视了植入体内后免疫反应对骨整合的影响。许多研究表明免疫系统在调节成骨破骨方面具有重要作用,尤其是巨噬细胞的双重调节作用。一些生物材料通过改变其理化性质或者添加生物活性成份,可以调节植入材料后的免疫反应,从而更好地促进骨整合。本文将对以上问题的相关研究进展进行综述。

In recent years, various biomaterials have been used more and more in orthopedics. Most of the studies on orthopedic biomaterials focus on their direct effect on osteogenesis, but ignore the effect of immune response on osseointegration after implantation. Many studies have shown that the immune system plays an important role in the regulation of osteogenesis and osteoclastogenesis, especially the dual regulation of macrophages. Some biomaterials can regulate the immune response after implantation by changing their physical and chemical properties or adding bioactive ingredients, so as to better promote osseointegration. This paper reviewed the research progress of the above issues.

[1]
Wall EJ, Jain V, Vora V, et al. Complications of Titanium and stainless steel elastic nail fixation of pediatric femoral fractures[J]. J Bone Joint Surg Am, 2008, 90(6): 1305-1313.
[2]
Sun D, Wharton JA, Wood R. Micro-abrasion mechanisms of cast CoCrMo in simulated body fluids[J]. Wear, 2009, 267(11): 1845-1855.
[3]
Jiang N, Guo Z, Sun D, et al. Promoting osseointegration of Ti implants through micro/nanoscaled hierarchical Ti phosphate/Ti oxide hybrid coating[J]. ACS Nano, 2018, 12(8): 7883-7891.
[4]
Diekmann J, Bauer S, Weizbauer A, et al. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: a pilot in vivo study in rabbits[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59: 1100-1109.
[5]
Di Maggio B, Sessa P, Mantelli P, et al. PEEK radiolucent plate for distal radius fractures: multicentre clinical results at 12 months follow up[J]. Injury, 2017, 48 Suppl 3: S34-S38.
[6]
Overmann AL, Aparicio C, Richards JT, et al. Orthopaedic osseointegration: implantology and future directions[J]. J Orthop Res, 2020, 38(7): 1445-1454.
[7]
Takizawa T, Nakayama N, Haniu H, et al. Titanium fiber plates for bone tissue repair[J/OL]. Adv Mater, 2018, 30(4): 1703608. DOI: 10.1002/adma.201703608.
[8]
Franz S, Rammelt S, Scharnweber D, et al. Immune responses to implants-a review of the implications for the design of immunomodulatory biomaterials[J]. Biomaterials, 2011, 32(28): 6692-6709.
[9]
Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials[J]. J Biomed Mater Res A, 2017, 105(3): 927-940.
[10]
Farah S, Doloff JC, Müller P, et al. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations[J]. Nat Mater, 2019, 18(8): 892-904.
[11]
Vegas AJ, Veiseh O, Doloff JC, et al. Corrigendum: combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates[J/OL]. Nat Biotechnol, 2016, 34(6): 666. DOI: 10.1038/nbt0616-666e.
[12]
Liu Q, Chiu A, Wang LH, et al. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation[J/OL]. Nat Commun, 2019, 10(1): 5262. DOI: 10.1038/s41467-019-13238-7.
[13]
Keyes BE, Liu S, Asare A, et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin[J]. Cell, 2016, 167(5): 1323-1338.e14.
[14]
朱海杰,李雅舒,王杨平,等. 皮肤γδ T淋巴细胞调节小鼠表皮细胞增殖分化对创面愈合的影响[J]. 中华烧伤杂志,2019, (04): 298-307.
[15]
Snyder RJ, Lantis J, Kirsner RS, et al. Macrophages: a review of their role in wound healing and their therapeutic use[J]. Wound Repair Regen, 2016, 24(4): 613-629.
[16]
Qin S, Zheng JH, Xia ZH, et al. CTHRC1 promotes wound repair by increasing M2 macrophages via regulating the TGF-β and notch pathways[J/OL]. Biomed Pharmacother, 2019, 113: 108594. DOI: 10.1016/j.biopha.2019.01.055.
[17]
Ma M, Liu WF, Hill PS, et al. Development of cationic polymer coatings to regulate foreign-body responses[J]. Adv Mater, 2011, 23(24): H189-H194.
[18]
Lee J, Bance ML. Physiology of osseointegration[J]. Otolaryngol Clin North Am, 2019, 52(2): 231-242.
[19]
Thalji G, Cooper LF. Molecular assessment of osseointegration in vitro: a review of current literature[J]. Int J Oral Maxillofac Implants, 2014, 29(2): e171-e199.
[20]
Miron RJ, Bosshardt DD. OsteoMacs: key players around bone biomaterials[J]. Biomaterials, 2016, 82: 1-19.
[21]
Batoon L, Millard SM, Raggatt LJ, et al. Osteomacs and bone regeneration[J]. Curr Osteoporos Rep, 2017, 15(4): 385-395.
[22]
Alexander KA, Raggatt LJ, Millard S, et al. Resting and injury-induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration[J]. Immunol Cell Biol, 2017, 95(1): 7-16.
[23]
Muñoz J, Akhavan NS, Mullins AP, et al. Macrophage polarization and osteoporosis: a review[J/OL]. Nutrients, 2020, 12(10): 2999. DOI:10.3390/nu12102999.
[24]
Udagawa N, Koide M, Nakamura M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways[J]. J Bone Miner Metab, 2021, 39(1): 19-26.
[25]
Wang T, He C. TNF-α and IL-6: the Link between immune and bone system[J]. Curr Drug Targets, 2020, 21(3): 213-227.
[26]
Amarasekara DS, Yun H, Kim S, et al. Regulation of osteoclast differentiation by cytokine networks[J/OL]. Immune Netw, 2018, 18(1): e8. DOI: 10.4110/in.2018.18.e8.
[27]
Ono T, Nakashima T. Recent advances in osteoclast biology[J]. Histochem Cell Biol, 2018, 149(4): 325-341.
[28]
凡军,曹丽萍.体外研究橙皮苷抑制钛颗粒介导的破骨细胞分化[J/CD].中华关节外科杂志(电子版),202014(6): 698-702.
[29]
Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin[J]. Clin Biochem, 2018, 59: 17-24.
[30]
Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization[J/OL]. Eur J Pharmacol, 2020, 877: 173090. DOI: 10.1016/j.ejphar.2020.173090.
[31]
Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J/OL]. Front Immunol, 2019, 10: 1084. DOI: 10.3389/fimmu.2019.01084.
[32]
Shapouri-Moghaddam A, Mohammadian S, Vazini HA, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440.
[33]
Loi F, Córdova LA, Pajarinen J, et al. Inflammation, fracture and bone repair[J]. Bone, 2016, 86: 119-130.
[34]
Sinder BP, Pettit AR, Mccauley LK. Macrophages: their emerging roles in bone[J]. J Bone Miner Res, 2015, 30(12): 2140-2149.
[35]
Brown BN, Ratner BD, Goodman SB, et al. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine[J]. Biomaterials, 2012, 33(15): 3792-3802.
[36]
Spiller KL, Nassiri S, Witherel CE, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds[J]. Biomaterials, 2015, 37: 194-207.
[37]
Sheikh Z, Brooks PJ, Barzilay O, et al. Macrophages, foreign body giant cells and their response to implantable biomaterials[J]. Materials (Basel), 2015, 8(9): 5671-5701.
[38]
Caicedo MS, Samelko L, Mcallister K, et al. Increasing both CoCrMo-alloy particle size and surface irregularity induces increased macrophage inflammasome activation in vitro potentially through lysosomal destabilization mechanisms[J]. J Orthop Res, 2013, 31(10): 1633-1642.
[39]
Veiseh O, Doloff JC, Ma M, et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates[J]. Nat Mater, 2015, 14(6): 643-651.
[40]
Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds[J]. Trends Biotechnol, 2012, 30(10): 546-554.
[41]
Garg K, Pullen NA, Oskeritzian CA, et al. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds[J]. Biomaterials, 2013, 34(18): 4439-4451.
[42]
Adlerz KM, Aranda-Espinoza H, Hayenga HN. Substrate elasticity regulates the behavior of human monocyte-derived macrophages[J] . Eur Biophys J, 2016, 45(4): 301-309.
[43]
Blakney AK, Swartzlander MD, Bryant SJ. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels[J]. J Biomed Mater Res A, 2012, 100(6): 1375-1386.
[44]
Previtera ML, Sengupta A. Substrate stiffness regulates proinflammatory mediator production through TLR4 activity in macrophages[J/OL]. PLoS One, 2015, 10(12): e0145813. DOI: 10.1371/journal.pone.0145813.
[45]
Okamoto T, Takagi Y, Kawamoto E, et al. Reduced substrate stiffness promotes M2-like macrophage activation and enhances peroxisome proliferator-activated receptor γ expression[J]. Exp Cell Res, 2018, 367(2): 264-273.
[46]
Moon H, Cremmel CV, Kulpa A, et al. Novel grooved substrata stimulate macrophage fusion, CCL2 and MMP-9 secretion[J]. J Biomed Mater Res A, 2016, 104(9): 2243-2254.
[47]
Hotchkiss KM, Reddy GB, Hyzy SL, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation[J]. Acta Biomater, 2016, 31: 425-434.
[48]
Mcwhorter FY, Wang T, Nguyen P, et al. Modulation of macrophage phenotype by cell shape[J]. Proc Natl Acad Sci USA, 2013, 110(43): 17253-17258.
[49]
Boehler RM, Graham JG, Shea LD. Tissue engineering tools for modulation of the immune response[J]. Biotechniques, 2011, 51(4): 239-240, 242, 244 passim.
[50]
Hamlet SM, Lee R, Moon HJ, et al. Hydrophilic titanium surface-induced macrophage modulation promotes pro-osteogenic signalling[J]. Clin Oral Implants Res, 2019, 30(11): 1085-1096.
[51]
Alfarsi MA, Hamlet SM, Ivanovski S. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response[J]. J Biomed Mater Res A, 2014, 102(1): 60-67.
[52]
Hotchkiss KM, Clark NM, Olivares-Navarrete R. Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations[J]. Biomaterials, 2018, 182: 202-215.
[53]
Brodbeck WG, Nakayama Y, Matsuda T, et al. Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro[J]. Cytokine, 2002, 18(6): 311-319.
[54]
Maywald M, Wessels I, Rink L. Zinc signals and immunity[J/OL]. Int J Mol Sci, 2017, 18(10): 2222. DOI: 10.3390/ijms18102222.
[55]
Bao B, Prasad AS, Beck F, et al. Intracellular free zinc up-regulates IFN-γ and T-bet essential for Th1 differentiation in Con-A stimulated HUT-78 cells[J]. Biochem Biophys Res Commun, 2011, 407(4): 703-707.
[56]
Liu W, Li J, Cheng M, et al. Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration[J/OL]. Adv Sci (Weinh), 2018, 5(10): 1800749. DOI: 10.1002/advs.201800749.
[57]
Chen B, You Y, Ma A, et al. Zn-Incorporated TiO(2) nanotube surface improves osteogenesis ability through influencing immunomodulatory function of macrophages[J]. Int J Nanomedicine, 2020, 15: 2095-2118.
[58]
Sugimoto J, Romani AM, Valentin-Torres AM, et al. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism[J]. J Immunol, 2012, 188(12): 6338-6346.
[59]
Wang M, Yu Y, Dai K, et al. Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation[J]. Biomater Sci, 2016, 4(11): 1574-1583.
[60]
Toita R, Sunarso, Rashid A, et al. Modulation of the osteoconductive property and immune response of poly(ether ether ketone) by modification with calcium ions[J]. J Mater Chem B, 2015, 3(44): 8738-8746.
[61]
Wu C, Zhou Y, Fan W, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable Cobalt ion release for bone tissue engineering[J]. Biomaterials, 2012, 33(7): 2076-2085.
[62]
Wei F, Zhou Y, Wang J, et al. The immunomodulatory role of BMP-2 on macrophages to accelerate osteogenesis[J]. Tissue Eng Part A, 2018, 24(7/8): 584-594.
[63]
Zhang X, Xing H, Qi F, et al. Local delivery of insulin/IGF-1 for bone regeneration: carriers, strategies, and effects[J]. Nanotheranostics, 2020, 4(4): 242-255.
[64]
Wei Y, Liu Z, Zhu X, et al. Dual directions to address the problem of aseptic loosening via electrospun PLGA @ aspirin nanofiber coatings on titanium[J/OL]. Biomaterials, 2020, 257: 120237. DOI: 10.1016/j.biomaterials.2020.120237.
[65]
Forte L, Torricelli P, Boanini E, et al. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: an in vitro osteoblast-osteoclast-endothelial cell co-culture study[J]. Acta Biomater, 2016, 32: 298-308.
[66]
Rutledge KE, Cheng Q, Jabbarzadeh E. Modulation of inflammatory response and induction of bone formation based on combinatorial effects of resveratrol[J/OL]. J Nanomed Nanotechnol, 2016, 7(1): 350. DOI: 10.4172/2157-7439.1000350.
[67]
Huebsch N, Kearney CJ, Zhao X, et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy[J]. Proc Natl Acad Sci USA, 2014, 111(27): 9762-9767.
[68]
Zhao X, Kim J, Cezar CA, et al. Active scaffolds for on-demand drug and cell delivery[J]. Proc Natl Acad Sci USA, 2011, 108(1): 67-72.
[69]
Zhang K, Wang S, Zhou C, et al. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration[J/OL]. Bone Res, 2018, 6(1): 31. DOI: 10.1038/s41413-018-0032-9.
[1] 胡欧婵, 黄仲英. 不明原因复发性流产患者的治疗研究现状与展望[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 16-22.
[2] 齐新宇, 孔菲, 赵捷, 王海燕, 乔杰. 生殖医学中的免疫学临床研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 1-9.
[3] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[4] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[5] 邓欣怡, 曾振宇, 李晓岚. 细菌群体感应信号对宿主免疫调节机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 140-147.
[6] 尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.
[7] 张原, 李小龙, 王亚鹏. 胰腺癌中ANGPTL2蛋白与免疫抑制细胞浸润的关系及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 145-148.
[8] 张燕珍, 王锡携, 文小兰. 血清巨噬细胞迁移抑制因子对活动性肺结核分诊检测的意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 200-202.
[9] 曾显坤, 霍鹏. 血清MIF联合LCN-2对NSCLC患者的诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 92-94.
[10] 沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.
[11] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[12] 刘晓梅, 张露, 刘旭, 梁蝶. 巨噬细胞迁移抑制因子靶向miR-127-3p对人肾癌细胞生物学行为的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 76-83.
[13] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[14] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[15] 李世浩, 王玉姣, 李子豪, 吴彬, 盛银良, 齐宇. 单细胞转录组分析巨噬细胞帽状蛋白对食管鳞癌细胞增殖和转移的影响[J]. 中华胸部外科电子杂志, 2023, 10(02): 98-105.
阅读次数
全文


摘要