[1] |
Wall EJ, Jain V, Vora V, et al. Complications of Titanium and stainless steel elastic nail fixation of pediatric femoral fractures[J]. J Bone Joint Surg Am, 2008, 90(6): 1305-1313.
|
[2] |
Sun D, Wharton JA, Wood R. Micro-abrasion mechanisms of cast CoCrMo in simulated body fluids[J]. Wear, 2009, 267(11): 1845-1855.
|
[3] |
Jiang N, Guo Z, Sun D, et al. Promoting osseointegration of Ti implants through micro/nanoscaled hierarchical Ti phosphate/Ti oxide hybrid coating[J]. ACS Nano, 2018, 12(8): 7883-7891.
|
[4] |
Diekmann J, Bauer S, Weizbauer A, et al. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: a pilot in vivo study in rabbits[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59: 1100-1109.
|
[5] |
Di Maggio B, Sessa P, Mantelli P, et al. PEEK radiolucent plate for distal radius fractures: multicentre clinical results at 12 months follow up[J]. Injury, 2017, 48 Suppl 3: S34-S38.
|
[6] |
Overmann AL, Aparicio C, Richards JT, et al. Orthopaedic osseointegration: implantology and future directions[J]. J Orthop Res, 2020, 38(7): 1445-1454.
|
[7] |
Takizawa T, Nakayama N, Haniu H, et al. Titanium fiber plates for bone tissue repair[J/OL]. Adv Mater, 2018, 30(4): 1703608. DOI: 10.1002/adma.201703608.
|
[8] |
Franz S, Rammelt S, Scharnweber D, et al. Immune responses to implants-a review of the implications for the design of immunomodulatory biomaterials[J]. Biomaterials, 2011, 32(28): 6692-6709.
|
[9] |
Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials[J]. J Biomed Mater Res A, 2017, 105(3): 927-940.
|
[10] |
Farah S, Doloff JC, Müller P, et al. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations[J]. Nat Mater, 2019, 18(8): 892-904.
|
[11] |
Vegas AJ, Veiseh O, Doloff JC, et al. Corrigendum: combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates[J/OL]. Nat Biotechnol, 2016, 34(6): 666. DOI: 10.1038/nbt0616-666e.
|
[12] |
Liu Q, Chiu A, Wang LH, et al. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation[J/OL]. Nat Commun, 2019, 10(1): 5262. DOI: 10.1038/s41467-019-13238-7.
|
[13] |
Keyes BE, Liu S, Asare A, et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin[J]. Cell, 2016, 167(5): 1323-1338.e14.
|
[14] |
朱海杰,李雅舒,王杨平,等. 皮肤γδ T淋巴细胞调节小鼠表皮细胞增殖分化对创面愈合的影响[J]. 中华烧伤杂志,2019, (04): 298-307.
|
[15] |
Snyder RJ, Lantis J, Kirsner RS, et al. Macrophages: a review of their role in wound healing and their therapeutic use[J]. Wound Repair Regen, 2016, 24(4): 613-629.
|
[16] |
Qin S, Zheng JH, Xia ZH, et al. CTHRC1 promotes wound repair by increasing M2 macrophages via regulating the TGF-β and notch pathways[J/OL]. Biomed Pharmacother, 2019, 113: 108594. DOI: 10.1016/j.biopha.2019.01.055.
|
[17] |
Ma M, Liu WF, Hill PS, et al. Development of cationic polymer coatings to regulate foreign-body responses[J]. Adv Mater, 2011, 23(24): H189-H194.
|
[18] |
Lee J, Bance ML. Physiology of osseointegration[J]. Otolaryngol Clin North Am, 2019, 52(2): 231-242.
|
[19] |
Thalji G, Cooper LF. Molecular assessment of osseointegration in vitro: a review of current literature[J]. Int J Oral Maxillofac Implants, 2014, 29(2): e171-e199.
|
[20] |
Miron RJ, Bosshardt DD. OsteoMacs: key players around bone biomaterials[J]. Biomaterials, 2016, 82: 1-19.
|
[21] |
Batoon L, Millard SM, Raggatt LJ, et al. Osteomacs and bone regeneration[J]. Curr Osteoporos Rep, 2017, 15(4): 385-395.
|
[22] |
Alexander KA, Raggatt LJ, Millard S, et al. Resting and injury-induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration[J]. Immunol Cell Biol, 2017, 95(1): 7-16.
|
[23] |
Muñoz J, Akhavan NS, Mullins AP, et al. Macrophage polarization and osteoporosis: a review[J/OL]. Nutrients, 2020, 12(10): 2999. DOI: 10.3390/nu12102999.
|
[24] |
Udagawa N, Koide M, Nakamura M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways[J]. J Bone Miner Metab, 2021, 39(1): 19-26.
|
[25] |
Wang T, He C. TNF-α and IL-6: the Link between immune and bone system[J]. Curr Drug Targets, 2020, 21(3): 213-227.
|
[26] |
Amarasekara DS, Yun H, Kim S, et al. Regulation of osteoclast differentiation by cytokine networks[J/OL]. Immune Netw, 2018, 18(1): e8. DOI: 10.4110/in.2018.18.e8.
|
[27] |
Ono T, Nakashima T. Recent advances in osteoclast biology[J]. Histochem Cell Biol, 2018, 149(4): 325-341.
|
[28] |
凡军,曹丽萍.体外研究橙皮苷抑制钛颗粒介导的破骨细胞分化[J/CD].中华关节外科杂志(电子版),2020,14(6): 698-702.
|
[29] |
Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin[J]. Clin Biochem, 2018, 59: 17-24.
|
[30] |
Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization[J/OL]. Eur J Pharmacol, 2020, 877: 173090. DOI: 10.1016/j.ejphar.2020.173090.
|
[31] |
Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J/OL]. Front Immunol, 2019, 10: 1084. DOI: 10.3389/fimmu.2019.01084.
|
[32] |
Shapouri-Moghaddam A, Mohammadian S, Vazini HA, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440.
|
[33] |
Loi F, Córdova LA, Pajarinen J, et al. Inflammation, fracture and bone repair[J]. Bone, 2016, 86: 119-130.
|
[34] |
Sinder BP, Pettit AR, Mccauley LK. Macrophages: their emerging roles in bone[J]. J Bone Miner Res, 2015, 30(12): 2140-2149.
|
[35] |
Brown BN, Ratner BD, Goodman SB, et al. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine[J]. Biomaterials, 2012, 33(15): 3792-3802.
|
[36] |
Spiller KL, Nassiri S, Witherel CE, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds[J]. Biomaterials, 2015, 37: 194-207.
|
[37] |
Sheikh Z, Brooks PJ, Barzilay O, et al. Macrophages, foreign body giant cells and their response to implantable biomaterials[J]. Materials (Basel), 2015, 8(9): 5671-5701.
|
[38] |
Caicedo MS, Samelko L, Mcallister K, et al. Increasing both CoCrMo-alloy particle size and surface irregularity induces increased macrophage inflammasome activation in vitro potentially through lysosomal destabilization mechanisms[J]. J Orthop Res, 2013, 31(10): 1633-1642.
|
[39] |
Veiseh O, Doloff JC, Ma M, et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates[J]. Nat Mater, 2015, 14(6): 643-651.
|
[40] |
Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds[J]. Trends Biotechnol, 2012, 30(10): 546-554.
|
[41] |
Garg K, Pullen NA, Oskeritzian CA, et al. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds[J]. Biomaterials, 2013, 34(18): 4439-4451.
|
[42] |
Adlerz KM, Aranda-Espinoza H, Hayenga HN. Substrate elasticity regulates the behavior of human monocyte-derived macrophages[J] . Eur Biophys J, 2016, 45(4): 301-309.
|
[43] |
Blakney AK, Swartzlander MD, Bryant SJ. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels[J]. J Biomed Mater Res A, 2012, 100(6): 1375-1386.
|
[44] |
Previtera ML, Sengupta A. Substrate stiffness regulates proinflammatory mediator production through TLR4 activity in macrophages[J/OL]. PLoS One, 2015, 10(12): e0145813. DOI: 10.1371/journal.pone.0145813.
|
[45] |
Okamoto T, Takagi Y, Kawamoto E, et al. Reduced substrate stiffness promotes M2-like macrophage activation and enhances peroxisome proliferator-activated receptor γ expression[J]. Exp Cell Res, 2018, 367(2): 264-273.
|
[46] |
Moon H, Cremmel CV, Kulpa A, et al. Novel grooved substrata stimulate macrophage fusion, CCL2 and MMP-9 secretion[J]. J Biomed Mater Res A, 2016, 104(9): 2243-2254.
|
[47] |
Hotchkiss KM, Reddy GB, Hyzy SL, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation[J]. Acta Biomater, 2016, 31: 425-434.
|
[48] |
Mcwhorter FY, Wang T, Nguyen P, et al. Modulation of macrophage phenotype by cell shape[J]. Proc Natl Acad Sci USA, 2013, 110(43): 17253-17258.
|
[49] |
Boehler RM, Graham JG, Shea LD. Tissue engineering tools for modulation of the immune response[J]. Biotechniques, 2011, 51(4): 239-240, 242, 244 passim.
|
[50] |
Hamlet SM, Lee R, Moon HJ, et al. Hydrophilic titanium surface-induced macrophage modulation promotes pro-osteogenic signalling[J]. Clin Oral Implants Res, 2019, 30(11): 1085-1096.
|
[51] |
Alfarsi MA, Hamlet SM, Ivanovski S. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response[J]. J Biomed Mater Res A, 2014, 102(1): 60-67.
|
[52] |
Hotchkiss KM, Clark NM, Olivares-Navarrete R. Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations[J]. Biomaterials, 2018, 182: 202-215.
|
[53] |
Brodbeck WG, Nakayama Y, Matsuda T, et al. Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro[J]. Cytokine, 2002, 18(6): 311-319.
|
[54] |
Maywald M, Wessels I, Rink L. Zinc signals and immunity[J/OL]. Int J Mol Sci, 2017, 18(10): 2222. DOI: 10.3390/ijms18102222.
|
[55] |
Bao B, Prasad AS, Beck F, et al. Intracellular free zinc up-regulates IFN-γ and T-bet essential for Th1 differentiation in Con-A stimulated HUT-78 cells[J]. Biochem Biophys Res Commun, 2011, 407(4): 703-707.
|
[56] |
Liu W, Li J, Cheng M, et al. Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration[J/OL]. Adv Sci (Weinh), 2018, 5(10): 1800749. DOI: 10.1002/advs.201800749.
|
[57] |
Chen B, You Y, Ma A, et al. Zn-Incorporated TiO(2) nanotube surface improves osteogenesis ability through influencing immunomodulatory function of macrophages[J]. Int J Nanomedicine, 2020, 15: 2095-2118.
|
[58] |
Sugimoto J, Romani AM, Valentin-Torres AM, et al. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism[J]. J Immunol, 2012, 188(12): 6338-6346.
|
[59] |
Wang M, Yu Y, Dai K, et al. Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation[J]. Biomater Sci, 2016, 4(11): 1574-1583.
|
[60] |
Toita R, Sunarso, Rashid A, et al. Modulation of the osteoconductive property and immune response of poly(ether ether ketone) by modification with calcium ions[J]. J Mater Chem B, 2015, 3(44): 8738-8746.
|
[61] |
Wu C, Zhou Y, Fan W, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable Cobalt ion release for bone tissue engineering[J]. Biomaterials, 2012, 33(7): 2076-2085.
|
[62] |
Wei F, Zhou Y, Wang J, et al. The immunomodulatory role of BMP-2 on macrophages to accelerate osteogenesis[J]. Tissue Eng Part A, 2018, 24(7/8): 584-594.
|
[63] |
Zhang X, Xing H, Qi F, et al. Local delivery of insulin/IGF-1 for bone regeneration: carriers, strategies, and effects[J]. Nanotheranostics, 2020, 4(4): 242-255.
|
[64] |
Wei Y, Liu Z, Zhu X, et al. Dual directions to address the problem of aseptic loosening via electrospun PLGA @ aspirin nanofiber coatings on titanium[J/OL]. Biomaterials, 2020, 257: 120237. DOI: 10.1016/j.biomaterials.2020.120237.
|
[65] |
Forte L, Torricelli P, Boanini E, et al. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: an in vitro osteoblast-osteoclast-endothelial cell co-culture study[J]. Acta Biomater, 2016, 32: 298-308.
|
[66] |
Rutledge KE, Cheng Q, Jabbarzadeh E. Modulation of inflammatory response and induction of bone formation based on combinatorial effects of resveratrol[J/OL]. J Nanomed Nanotechnol, 2016, 7(1): 350. DOI: 10.4172/2157-7439.1000350.
|
[67] |
Huebsch N, Kearney CJ, Zhao X, et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy[J]. Proc Natl Acad Sci USA, 2014, 111(27): 9762-9767.
|
[68] |
Zhao X, Kim J, Cezar CA, et al. Active scaffolds for on-demand drug and cell delivery[J]. Proc Natl Acad Sci USA, 2011, 108(1): 67-72.
|
[69] |
Zhang K, Wang S, Zhou C, et al. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration[J/OL]. Bone Res, 2018, 6(1): 31. DOI: 10.1038/s41413-018-0032-9.
|