[1] |
O′Neill TW, Felson DT. Mechanisms of Osteoarthritis (OA) Pain[J]. Curr Osteoporos Rep, 2018, 16(5): 611-616.
|
[2] |
Hawker GA. Osteoarthritis is a serious disease[J]. Clin Exp Rheumatol, 2019, 37 Suppl 120(5): 3-6.
|
[3] |
Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study[J]. Ann Rheum Dis, 2014, 73(7): 1323-1330.
|
[4] |
Carballo CB, Nakagawa Y, Sekiya I, et al. Basic science of articular cartilage[J]. Clin Sports Med, 2017, 36(3): 413-425.
|
[5] |
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
|
[6] |
Kolasinski SL, Neogi T, Hochberg MC, et al. 2019 American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee[J]. Arthritis Care Res (Hoboken), 2020, 72(2): 149-162.
|
[7] |
Carr AJ, Robertsson O, Graves S, et al. Knee replacement[J]. Lancet, 2012, 379(9823): 1331-1340.
|
[8] |
Guilak F. Biomechanical factors in osteoarthritis[J]. Best Pract Res Clin Rheumatol, 2011, 25(6): 815-823.
|
[9] |
Eskelinen A, Tanska P, Florea C, et al. Mechanobiological model for simulation of injured cartilage degradation via pro-inflammatory cytokines and mechanical stimulus[J/OL]. PLOS Comput Biol. 2020, 16(6): e1007998. doi: 10.1371/journal.pcbi.1007998.
|
[10] |
Andriacchi TP, Mündermann A, Smith RL, et al. A framework for the in vivo pathomechanics of osteoarthritis at the knee[J]. Ann Biomed Eng, 2004, 32(3): 447-457.
|
[11] |
Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis[J]. Nat Rev Rheumatol, 2016, 12(7): 412-420.
|
[12] |
Fu K, Robbins SR, Mcdougall JJ. Osteoarthritis: the Genesis of pain[J]. Rheumatology (Oxford), 2018, 57(suppl_4): iv43-iv50.
|
[13] |
Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(7): 390-398.
|
[14] |
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J/OL]. Nat Rev Dis Primers, 2016, 2: 16072. doi: 10.1038/nrdp.2016.72.
|
[15] |
Zhu S, Zhu J, Zhen G, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain[J]. J Clin Invest, 2019, 129(3): 1076-1093.
|
[16] |
Yusuf E, Kortekaas MC, Watt I, et al. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review[J]. Ann Rheum Dis, 2011, 70(1): 60-67.
|
[17] |
Daugaard CL, Riis RG, Bandak E, et al. Perfusion in bone marrow lesions assessed on DCE-MRI and its association with pain in knee osteoarthritis: a cross-sectional study[J]. Skeletal Radiol, 2020, 49(5): 757-764.
|
[18] |
Alliston T, Hernandez CJ, Findlay DM, et al. Bone marrow lesions in osteoarthritis: What lies beneath[J]. J Orthop Res, 2018, 36(7): 1818-1825.
|
[19] |
Korompilias AV, Karantanas AH, Lykissas MG, et al. Bone marrow edema syndrome[J]. Skeletal Radiol, 2009, 38(5): 425-436.
|
[20] |
曹小燕,李凤霞,叶青.唑来膦酸钠抗骨质疏松治疗膝骨关节炎的疗效观察[J].湖北医药学院学报,2014,33(1):56-58.
|
[21] |
Cai G, Aitken D, Laslett LL, et al. Effect of intravenous zoledronic acid on tibiofemoral cartilage volume among patients with knee osteoarthritis with bone marrow lesions: a randomized clinical trial[J]. JAMA, 2020, 323(15): 1456-1466.
|
[22] |
Belluzzi E, Stocco E, Pozzuoli A, et al. Contribution of infrapatellar fat pad and synovial membrane to knee osteoarthritis pain[J/OL]. Biomed Res Int, 2019, (1): 6390182. doi: 10.1155/2019/6390182.
|
[23] |
Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications[J/OL]. Arthritis Res Ther, 2017, 19(1): 18. doi: 10.1186/s13075-017-1229-9.
|
[24] |
Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis[J]. Bone, 2012, 51(2, SI): 249-257.
|
[25] |
Thudium CS, Löfvall H, Karsdal MA, et al. Protein biomarkers associated with pain mechanisms in osteoarthritis[J]. J Proteomics, 2019, 190(SI): 55-66.
|
[26] |
Nwosu LN, Mapp PI, Chapman V, et al. Relationship between structural pathology and pain behaviour in a model of osteoarthritis (OA)[J]. Osteoarthritis Cartilage, 2016, 24(11): 1910-1917.
|
[27] |
Hoshino T, Tsuji K, Onuma H, et al. Persistent synovial inflammation plays important roles in persistent pain development in the rat knee before cartilage degradation reaches the subchondral bone[J/OL]. BMC Musculoskelet Disord, 2018, 19(1): 291. doi: 10.1186/s12891-018-2221-5.
|
[28] |
Sarmanova A, Hall M, Fernandes GS, et al. Association between ultrasound-detected synovitis and knee pain: a population-based case-control study with both cross-sectional and follow-up data[J/OL]. Arthritis Res Ther, 2017, 19(1): 281. doi: 10.1186/s13075-017-1486-7.
|
[29] |
Wallace G, Cro S, Dore C, et al. Associations between clinical evidence of inflammation and synovitis in symptomatic knee osteoarthritis:a cross-sectional substudy[J]. Arthritis Care Res (Hoboken), 2017, 69(9): 1340-1348.
|
[30] |
Jacobson JA, Lenchik L, Ruhoy MK, et al. Mr imaging of the infrapatellar fat pad of Hoffa[J]. Radiographics, 1997, 17(3): 675-691.
|
[31] |
Sbarbati A, Accorsi D, Benati D, et al. Subcutaneous adipose tissue classification[J/OL]. Eur J Histochem, 2010, 54(4): e48: 226-230. doi: 10.4081/ejh.2010.e48.
|
[32] |
Eymard F, Pigenet A, Citadelle D, et al. Knee and hip intra-articular adipose tissues (IAATs) compared with autologous subcutaneous adipose tissue: a specific phenotype for a central player in osteoarthritis[J]. Ann Rheum Dis, 2017, 76(6): 1142-1148.
|
[33] |
Favero M, El-Hadi H, Belluzzi E, et al. Infrapatellar fat pad features in osteoarthritis: a histopathological and molecular study[J]. Rheumatology (Oxford), 2017, 56(10): 1784-1793.
|
[34] |
Barboza E, Hudson J, Chang WP, et al. Profibrotic infrapatellar fat pad remodeling without M1 macrophage polarization precedes knee osteoarthritis in mice with Diet-Induced obesity[J]. Arthritis Rheumatol, 2017, 69(6): 1221-1232.
|
[35] |
Han W, Aitken D, Zhu Z, et al. Hypointense signals in the infrapatellar fat pad assessed by magnetic resonance imaging are associated with knee symptoms and structure in older adults: a cohort study[J/OL]. Arthritis Res Ther, 2016, 18(1): 234. doi: 10.1186/s13075-016-1130-y.
|
[36] |
Macchi V, Stocco E, Stecco C, et al. The infrapatellar fat pad and the synovial membrane: an anatomo-functional unit[J]. J Anat, 2018, 233(2): 146-154.
|
[37] |
Onuma H, Tsuji K, Hoshino T, et al. Fibrotic changes in the infrapatellar fat pad induce new vessel formation and sensory nerve fiber endings that associate prolonged pain[J]. J Orthop Res, 2020, 38(6): 1296-1306.
|
[38] |
Aikawa J, Uchida K, Takano S, et al. Expression of calcitonin gene-related peptide in the infrapatellar fat pad in knee osteoarthritis patients[J/OL]. J Orthop Surg Res, 2017, 12(1): 65. doi: 10.1186/s13018-017-0568-1.
|
[39] |
Sun C, Zhang X, Lee WG, et al. Infrapatellar fat pad resection or preservation during total knee arthroplasty: a meta-analysis of randomized controlled trials[J/OL]. J Orthop Surg Res, 2020, 15(1): 297. doi: 10.1186/s13018-020-01823-2.
|
[40] |
Song J, Chang AH, Chang RW, et al. Relationship of knee pain to time in moderate and light physical activities: data from Osteoarthritis Initiative[J]. Semin Arthritis Rheum, 2018, 47(5): 683-688.
|
[41] |
Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis[J]. Nat Rev Rheumatol, 2015, 11(1): 35-44.
|
[42] |
Malfait AM, Schnitzer TJ. Towards a mechanism-based approach to pain management in osteoarthritis[J]. Nat Rev Rheumatol, 2013, 9(11): 654-664.
|
[43] |
Syx D, Tran PB, Miller RE, et al. Peripheral mechanisms contributing to osteoarthritis pain[J/OL]. Curr Rheumatol Rep, 2018, 20(2): 9. doi: 10.1007/s11926-018-0716-6.
|
[44] |
Soni A, Wanigasekera V, Mezue M, et al. Central sensitization in knee osteoarthritis: relating presurgical brainstem neuroimaging and pain detect-based patient stratification to arthroplasty outcome[J]. Arthritis Rheumatol, 2019, 71(4): 550-560.
|
[45] |
王波,余楠生.膝骨关节炎阶梯治疗专家共识(2018年版)[J/CD].中华关节外科杂志(电子版),2019,13(1):124-130.
|