切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (05) : 586 -595. doi: 10.3877/cma.j.issn.1674-134X.2021.05.010

综述

膝骨关节炎与膝关节周围骨密度的相关性研究进展
郭子瑊1, 毛兴佳1, 高英杰1, 高振中1, 向川1,()   
  1. 1. 030001 太原,山西医科大学第二医院骨科
  • 收稿日期:2020-09-03 出版日期:2021-10-01
  • 通信作者: 向川
  • 基金资助:
    国家自然科学基金项目(81972075)

Research progress on relationship between knee osteoarthritis and bone mineral density around knee joint

Zijian Guo1, Xingjia Mao1, Yingjie Gao1, Zhenzhong Gao1, Chuan Xiang1,()   

  1. 1. Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2020-09-03 Published:2021-10-01
  • Corresponding author: Chuan Xiang
引用本文:

郭子瑊, 毛兴佳, 高英杰, 高振中, 向川. 膝骨关节炎与膝关节周围骨密度的相关性研究进展[J]. 中华关节外科杂志(电子版), 2021, 15(05): 586-595.

Zijian Guo, Xingjia Mao, Yingjie Gao, Zhenzhong Gao, Chuan Xiang. Research progress on relationship between knee osteoarthritis and bone mineral density around knee joint[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2021, 15(05): 586-595.

膝骨关节炎(KOA)是以软骨退变及关节间隙变窄为主要特征的慢性、退行性疾病。骨密度(BMD)是指单位体积或面积的骨矿物质含量,是临床上用于反映骨质量的重要指标。全身BMD和膝关节BMD与KOA的分级,疼痛,生活质量及术后效果都有很密切的联系。尤其是膝关节BMD对于KOA的早期诊断、发展和预后都具有更为重要的意义,且二者的关系十分复杂,并成为近年来的研究热点,但目前膝关节BMD测量方法尚未统一,成为制约研究二者关系的瓶颈。本文对膝关节BMD与KOA的关系重点阐述,简要回顾并对比了近年来有关膝关节BMD测量方法,对今后相关研究提供参考和指导。

Knee osteoarthritis (KOA) is a chronic and slowly progressive joint disease characterized by cartilage degeneration and narrowing of joint space. It is the type with the highest incidence of osteoarthritis (OA). Bone mineral density (BMD) refers to the bone mineral content per unit volume or surface, which is an important index to reflect bone quality in clinic. There is a close relationship between whole body BMD and knee joint BMD and KOA grade, pain, quality of life and postoperative effect. In particular, knee joint BMD plays a more important role in the early diagnosis, development and prognosis of KOA, and the relationship between them is very complex and has become a research hotspot in recent years. But the measurement methods of knee joint BMD have not been unified. This paper focused on the relationship between knee joint BMD and KOA, briefly reviewed and compares the measurement methods of knee joint BMD in recent years, so as to provide reference and guidance for related research in the future.

表1 各个研究主要特征及结果
第一作者 研究类型 测量部位 测量方法 例数 重要结果
Clarke [10] 前瞻性研究 胫骨近端内外侧软骨下骨骨密度 DXA 112 胫骨近端内侧软骨下骨密度高于外侧。内侧骨密度与患者性别、身高、体重、最小内侧关节间隙宽度显著相关。男性和女性的平均外侧骨密度随着进入年龄的增加而下降,但内侧骨密度没有下降。
Lo [31] 横断面研究 胫骨近端内外侧骨密度 DXA 436 髋-膝-踝角度(hip-knee-ankle, HKA)与内外侧BMD的相关系数大于任何其他骨测量。内翻对齐程度越高,内侧BMD越低。内侧和外侧的BMD占HKA变异的40%。当仅对那些影响诊断OA的膝关节进行分析时,内侧和外侧的BMD占HKA变异的47%。
Lo [6] 横断面研究 胫骨近端内侧 DXA 482 通过评估内侧BMD和MRI骨小梁测量的总体比较具有统计学意义。结果显示在内侧关节间隙狭窄评分较高的膝关节(2/3级)中,骨密度、骨小梁体积、骨小梁数量和骨小梁厚度在统计学上大于内侧关节间隙不狭窄患者(0/1级)。
Lo [23] 纵向观察性队列研究 胫骨近端内外侧骨密度 DXA 444 M/L BMD、表观骨体积分数、骨小梁数量和骨小梁厚度的增加与关节内侧进展相关。M/L BMD从最低到最高四分位数的变化,每组经历内侧关节突进展者的比例分别为5%、5%、11%和18%。并且M/L BMD是与外侧关节间隙狭窄相关的唯一测量量。
Omoumi[20] 回顾性病例对照研究 股骨远端及胫骨近端 CT 32 无论是总承重区还是非承重亚区,内侧的BMD均显著高于外侧。当比较总承重区时,KOA和非KOA膝关节BMD差异无统计学意义,但KOA患者胫骨外侧BMD明显低于非KOA。OA膝关节的胫骨外侧区BMD较低。股骨内侧有较高的BMD,而股骨外侧有较低的BMD。在胫骨亚区方面,KOA患者的内侧外侧亚区BMD均显著高于非KOA患者,在外侧中央亚区和前亚区显著低于非OA膝。在股骨和胫骨总承重区,KOA膝关节的M/LBMD明显高于非OA膝关节。
Sannmann[32] 前瞻性研究 股骨远端及胫骨近端 QCT 67 骨骺下部和骨骺中部的内侧骨密度高于外侧骨密度,但低于骨骺毗邻区的外侧骨密度。半月板覆盖和非半月板覆盖区之间的骨密度差异也有相似的影响。骨骺下半月板非覆盖区BMD高于覆盖区BMD。骨骺中区骨密度无明显差异。而骨骺毗邻区半月板覆盖区BMD高于非覆盖区BMD。
Burnett [22] 前瞻性研究 股骨远端、髌骨、胫骨近端,以及胫骨远端终板近端66%的胫骨干 QCT 42 有"剧烈疼痛"的参与者比"无疼痛"的参与者有更高的胫骨平台外侧BMD。在距软骨下表面2.5 mm处,或在整个胫骨内外侧平台,局灶性骨密度在各组之间差异无统计学意义。然而,在疼痛增加的各组中,胫骨平台内侧骨密度降低的趋势差异并无统计学意义。胫骨干皮质横截面积和密度差异无统计学意义。
Ishii [33] 前瞻性研究 股骨内外侧髁及胫骨内外侧 DXA 156 采用多元线性回归分析和逐步变量选择进行多因素分析,股骨M/L BMD比值只有胫骨角有显著影响,而胫骨M/LBMD比值只有机械轴角度有显著影响。
Burnett [34] 前瞻性研究 股骨远端、髌骨、胫骨近端和胫骨远端终板近端66%的胫骨干 QCT 42 夜间卧床疼痛与距胫骨软骨下表面2.5~5 mm处的侧位骨密度显著相关。股骨远端,髌骨,胫骨近端都与患者疼痛感觉密切相关。
Huang [3] 前瞻性队列研究 股骨远端 DXA 50 线性回归分析显示vBMD与术后疼痛呈正相关。vBMD与"疼痛"和"症状"领域得分的变化呈负相关。术后2个月膝关节骨密度与"日常生活能力"呈负相关。
Shiraishi [35] 前瞻性研究 胫骨近端软骨下骨 HR-pQCT 20 内侧平台和外侧平台之间的骨显微结构有显著差异。内侧平台软骨下骨微结构由密度较大、厚度较厚的骨小梁组成,其骨小梁排列各向异性结构明显多于外侧平台。内侧平台的vBMD、骨小梁体积、与K & L分级呈正相关。胫骨平台内侧的vBMD与骨小梁体积和机械轴偏差呈正相关,而骨小梁间距与机械轴偏差呈负相关。此外内侧平台的vBMD、骨小梁数量、体积、间距、厚度与K & L分级和股胫角呈正相关。
Bruyere [29] 前瞻性研究 胫骨近端软骨下骨 DXA 56 软骨下骨密度与关节间隙宽度的1年变化呈显著负相关。当以年龄、性别、体重指数和基线的最小关节扭力为伴随变量进行多元回归分析时,软骨下骨的骨密度和基线的关节扭力是关节扭力1年变化的独立预测因子。
Akamatsu [36] 前瞻性研究横断面 股骨内外侧髁及胫骨内外侧 DXA 192 股骨内侧髁骨密度随年龄增加而显著增加,而胫骨内侧髁骨密度无明显变化。股骨和胫骨内、外侧髁骨密度比值均与年龄呈正相关,而股骨外髁和胫骨髁骨密度与年龄呈负相关。随着疼痛程度的增加,股骨和胫骨内髁BMD均显著增加,而股骨和胫骨外髁BMD无明显变化。股骨和胫骨内、外侧髁骨密度比值随疼痛程度的增加而显著增加。股骨和胫骨髁内侧骨密度与股胫角、内侧和外侧骨赘、内侧关节间隙狭窄程度、腰椎和股骨颈骨密度、疼痛程度呈显著正相关,与膝关节疼痛和功能评分呈显著负相关。
Thorp [37] 前瞻性研究 胫骨近端内外侧骨密度 DXA 84 M/L BMD与身高、体重、BMI、年龄或疼痛之间没有显著关系。M/L BMD与终末站立时膝关节内收角动量的相关性最强,与其他一些动态负荷步态指标(如总体峰值,总角动量等)以及膝关节对齐角也有相关性。M/L BMD与自选正常步行速度呈负相关。
图1 下肢HKA(髋-膝-踝)角及双下肢长度测量
图2 患者接受膝关节BMD(骨密度)检查时采取的体位,图中箭头所指向为头部
图3 测量胫骨平台BMD(骨密度)时设置的胫骨平台内外侧ROI(感兴趣区)
图4 使用MRI测量时选取的ROI(感兴趣区)
[1]
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J/OL]. Nat Rev Dis Primers, 2016, 2:16072. doi: 10.1038/nrdp.2016.72.
[2]
Latypova A, Taghizadeh E, Becce F, et al. Patellar bone strain after total knee arthroplasty is correlated with bone mineral density and body mass index[J]. Med Eng Phys, 2019, 68:17-24.
[3]
Huang CC, Jiang CC, Hsieh CH, et al. Local bone quality affects the outcome of prosthetic total knee arthroplasty[J]. J Orthop Res, 2016, 34(2):240-248.
[4]
Deng ZH, Zeng C, Li YS, et al. Relation between phalangeal bone mineral density and radiographic knee osteoarthritis: a cross-sectional study[J/OL]. BMC Musculoskelet Disord, 2016, 17:71. doi: 10.1186/s12891-016-0918-x.
[5]
Hahn MH, Won YY. Bone mineral density changes after total knee replacement in women over the age of 65[J]. J Bone Metab, 2013, 20(2): 105-109.
[6]
Lo GH, Tassinari AM, Driban JB, et al. Cross-sectional DXA and Mr measures of tibial periarticular bone associate with radiographic knee osteoarthritis severity[J]. Osteoarthritis Cartilage, 2012, 20(7):686-693.
[7]
Lavalley MP, Lo GH, Price LL, et al. Development of a clinical prediction algorithm for knee osteoarthritis structural progression in a cohort study: value of adding measurement of subchondral bone density[J/OL]. Arthritis Res Ther, 2017, 19(1): 95. doi: 10.1186/s13075-017-1291-3.
[8]
Sepriano A, Roman-Blas JA, Little RD, et al. DXA in the assessment of subchondral bone mineral density in knee osteoarthritis--a semi-standardized protocol after systematic review[J]. Semin Arthritis Rheum, 2015, 45(3): 275-283.
[9]
Cirnigliaro CM, Parrott JS, Myslinski MJ, et al. Relationships between T-scores at the hip and bone mineral density at the distal femur and proximal tibia in persons with spinal cord injury[J/OL]. J Spinal Cord Med, 2019:1. doi: 10.1080/10790268.2019.1669957.
[10]
Clarke S, Wakeley C, Duddy J, et al. Dual-energy X-ray absorptiometry applied to the assessment of tibial subchondral bone mineral density in osteoarthritis of the knee[J]. Skeletal Radiol, 2004, 33(10): 588-595.
[11]
Tat LC, Singh G, Jonathan SB, et al. Mediolateral subchondral tibial bone mineral density difference does not predict osteoarthritis progression[J]. Orthopedics, 2014, 37(4): e351-e356.
[12]
Cai G, Otahal P, Cicuttini F, et al. The association of subchondral and systemic bone mineral density with osteoarthritis-related joint replacements in older adults[J]. Osteoarthritis Cartilage, 2020, 28(4): 438-445.
[13]
Huang ZP, Ding CH, Li TW, et al. Current status and future prospects for disease modification in osteoarthritis[J]. Rheumatology, 2018, 57(4): 108-123.
[14]
Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis[J]. Ann N Y Acad Sci, 2010, 1192: 230-237.
[15]
Lee JY, Harvey WF, Price LL, et al. Relationship of bone mineral density to progression of knee osteoarthritis[J]. Arthritis Rheum, 2013, 65(6): 1541-1546.
[16]
Zhai G, Blizzard L, Srikanth V, et al. Correlates of knee pain in older adults: tasmanian older adult cohort study[J]. Arthritis Rheum, 2006, 55(2): 264-271.
[17]
Pauly HM, Larson BE, Coatney GA, et al. Assessment of cortical and trabecular bone changes in two models of post-traumatic osteoarthritis[J]. J Orthop Res, 2015, 33(12): 1835-1845.
[18]
Fell N, Lawless BM, Cox SC, et al. The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores[J]. Osteoarthritis Cartilage, 2019, 27(3): 535-543.
[19]
Shakoor N, Dua A, Thorp LE, et al. Asymmetric loading and bone mineral density at the asymptomatic knees of patients with unilateral hip osteoarthritis[J/OL]. Arthritis Rheum, 2011, 63(12): 30626. doi: 10.1002/art.30626.
[20]
Omoumi P, Babel H, Jolles BM, et al. Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison of non-osteoarthritic (OA) and severe OA knees[J]. Osteoarthritis Cartilage, 2017, 25(11): 1850-1857.
[21]
Wen L, Shin MH, Kang JH, et al. The relationships between bone mineral density and radiographic features of hand or knee osteoarthritis in older adults: data from the Dong-gu Study[J]. Rheumatology (Oxford), 2016, 55(3): 495-503.
[22]
Burnett WD, Kontulainen S, Mclennan CE, et al. Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density[J]. Osteoarthritis Cartilage, 2015, 23(9): 1483-1490.
[23]
Lo GH, Schneider E, Driban JB, et al. Periarticular bone predicts knee osteoarthritis progression: data from the osteoarthritis initiative[J]. Semin Arthritis Rheum, 2018, 48(2): 155-161.
[24]
Tokgöz MA, Atik OŞ, Esendaǧlı G, et al. Is it possible that the pathogenesis of osteoarthritis could start with subchondral trabecular bone loss like osteoporosis?[J]. Eklem Hastalik Cerrahisi, 2018, 29(3):152-158. doi: 10.5606/ehc.2018.007.
[25]
Lobos S, Cooke A, Simonett G, et al. Assessment of bone mineral density at the distal femur and the proximal tibia by dual-energy X-ray absorptiometry in individuals with spinal cord injury: precision of protocol and pelation to injury duration[J]. J Clin Densitom, 2018, 21(3):338-346.
[26]
Weng LH, Wang CJ, Jy K, et al. Control of Dkk-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees[J]. Arthritis Rheum, 2010, 62(5): 1393-1402.
[27]
Funck-Brentano T, Lin H, Hay E, et al. Targeting bone alleviates osteoarthritis in osteopenic mice and modulates cartilage catabolism[J/OL]. PLoS One, 2012, 7(3): e33543. doi: 10.1371/journal.pone.0033543.
[28]
Burnett WD, Kontulainen S, Mclennan CE, et al. Knee osteoarthritis patients with more subchondral cysts have altered tibial subchondral bone mineral density[J/OL]. BMC Musculoskelet Disord, 2019, 20(1):14. doi:10.1186/s12891-018-2388-9.
[29]
Bruyere O, Dardenne C, Lejeune E, et al. Subchondral tibial bone mineral density predicts future joint space narrowing at the medial femoro-tibial compartment in patients with knee osteoarthritis[J]. Bone, 2003, 32(5):541-545.
[30]
Dequeker J, Aerssens J, Luyten FP. Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship[J]. Aging Clin Exp Res, 2003, 15(5): 426-439.
[31]
Lo GH, Merchant MG, Driban JB, et al. Knee alignment is quantitatively related to periarticular bone morphometry and density, especially in patients with osteoarthritis[J]. Arthritis Rheumatol, 2018, 70(2): 212-221.
[32]
Sannmann F, Laredo JD, Chappard C, et al. Impact of meniscal coverage on subchondral bone mineral density of the proximal tibia in female subjects-a cross-sectional in vivo study using QCT[J/OL]. Bone, 2020, 134:115292. doi: 10.1016/j.bone.2020.115292.
[33]
Ishii Y, Noguchi H, Sato J, et al. Association between bone mineral density distribution and various radiographic parameters in patients with advanced medial osteoarthritis of the knee[J]. J Orthop Sci, 2019, 24(4): 686-692.
[34]
Burnett WD, Kontulainen S, Mclennan CE, et al. Proximal tibial trabecular bone mineral density is related to pain in patients with osteoarthritis[J]. Arthritis Res Ther, 2017, 19(1): 200. doi: 10.1186/s13075-017-1415-9.
[35]
Shiraishi K, Chiba K, Okazaki N, et al. In vivo analysis of subchondral trabecular bone in patients with osteoarthritis of the knee using second-generation high-resolution peripheral quantitative computed tomography (HR-pQCT)[J/OL]. Bone, 2020, 132:115155. doi: 10.1016/j.bone.2019.115155.
[36]
Akamatsu Y, Mitsugi N, Taki N, et al. Medial versus lateral condyle bone mineral density ratios in a cross-sectional study: a potential marker for medial knee osteoarthritis severity[J]. Arthritis Care Res (Hoboken), 2012, 64(7): 1036-1045.
[37]
Thorp LE, Wimmer MA, Block JA, et al. Bone mineral density in the proximal tibia varies as a function of static alignment and knee adduction angular momentum in individuals with medial knee osteoarthritis[J]. Bone, 2006, 39(5): 1116-1122.
[38]
Deveza LA, Melo L, Yamato TP, et al. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review[J]. Osteoarthritis Cartilage, 2017, 25(12): 1926-1941.
[39]
Teichtahl AJ, Wang Y, Wluka AE, et al. Associations between systemic bone mineral density and early knee cartilage changes in middle-aged adults without clinical knee disease: a prospective cohort study[J]. Arthritis Res Ther, 2017, 19(1):98. doi: 10.1186/s13075-017-1314-0.
[40]
Marcucci G, Brandi ML. Rare causes of osteoporosis[J]. Clin Cases Miner Bone Metab, 2015, 12(2): 151-156.
[41]
Ryd L, Brittberg M, Eriksson K, et al. Pre-osteoarthritis: definition and diagnosis of an elusive clinical entity[J]. Cartilage, 2015, 6(3): 156-165.
[42]
Hochberg MC, Lethbridge-Cejku M, Tobin JD. Bone mineral density and osteoarthritis: data from the Baltimore Longitudinal Study of Aging[J]. Osteoarthritis Cartilage, 2004, 12(Suppl A): S45-S48.
[43]
Bergink AP, Uitterlinden AG, Van Leeuwen JP, et al. Bone mineral density and vertebral fracture history are associated with incident and progressive radiographic knee osteoarthritis in elderly men and women: the Rotterdam Study[J]. Bone, 2005, 37(4): 446-456.
[44]
Lo GH, Zhang Y, Mclennan C, et al. The ratio of medial to lateral tibial plateau bone mineral density and compartment-specific tibiofemoral osteoarthritis[J]. Osteoarthritis Cartilage, 2006, 14(10): 984-990.
[45]
Stewart A, Black A, Robins SP, et al. Bone density and bone turnover in patients with osteoarthritis and osteoporosis[J]. J Rheumatol, 1999, 26(3): 622-626.
[46]
Im GI, Kim MK. The relationship between osteoarthritis and osteoporosis[J]. J Bone Miner Metab, 2014, 32(2): 101-109.
[47]
Hayami T, Funaki H, Yaoeda K, et al. Expression of the cartilage derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis[J]. J Rheumatol, 2003, 30(10): 2207-2217.
[48]
Zupan J, Van′t Hof RJ, Vindišar F, et al. Osteoarthritic versus osteoporotic bone and intra-skeletal variations in normal bone: evaluation with μCT and bone histomorphometry[J]. J Orthop Res, 2013, 31(7): 1059-1066.
[49]
Wang CJ, Huang CY, Hsu SL, et al. Extracorporeal shockwave therapy in osteoporotic osteoarthritis of the knee in rats: an experiment in animals[J/OL]. Arthritis Res Ther, 2014, 16(4): R139. doi: 10.1186/ar4601.
[50]
Cınar Y, Atamaz FC, Kirazli Y, et al. A comparison of the femur heads histomorphometrically regarding trabecular bone properties in the patients with osteoporosis and osteoarthritis[J]. Aging Clin Exp Res, 2016, 28(5): 997-1001.
[51]
Narloch J, Wm G. Osteoarthritis changes hip geometry and biomechanics regardless of bone mineral density-a quantitative computed tomography study[J/OL]. J Clin Med, 2019, 8(5): 669. doi: 10.3390/jcm8050669.
[52]
Shen Y, Zhang YH, Shen L. Postmenopausal women with osteoporosis and osteoarthritis show different microstructural characteristics of trabecular bone in proximal tibia using high-resolution magnetic resonance imaging at 3 tesla[J/OL]. BMC Musculoskelet Disord, 2013, 14:136. doi: 10.1186/1471-2474-14-136.
[53]
Zhang ZM, Zc L, Jiang LS, et al. Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis[J]. Osteoporos Int, 2010, 21(8): 1383-1390.
[54]
Setty N, Leboff MS, Thornhill TS, et al. Underestimated fracture probability in patients with unilateral hip osteoarthritis as calculated by FRAX[J]. J Clin Densitom, 2011, 14(4): 447-452.
[55]
Povoroznyuk VV, Zaverukha NV, Musiienko AS. Bone mineral density and trabecular bone score in postmenopausal women with knee osteoarthritis and obesity[J]. Wiad Lek, 2020, 73(3): 529-533.
[56]
Kim YH, Lee JS, Park JH. Association between bone mineral density and knee osteoarthritis in Koreans: the Fourth and Fifth Korea National Health and Nutrition Examination Surveys[J]. Osteoarthritis Cartilage, 2018, 26(11): 1511-1517.
[57]
Bergink AP, Rivadeneira F, Bierma-Zeinstra SM, et al. Are bone mineral density and fractures related to the incidence and progression of radiographic osteoarthritis of the knee, hip, and hand in elderly men and women? The Rotterdam study[J]. Arthritis Rheumatol, 2019, 71(3): 361-369.
[58]
Sevilla RS, Cruz F, Chiu C, et al. Development and optimization of a high-throughput micro-computed tomography imaging method incorporating a novel analysis technique to evaluate bone mineral density of arthritic joints in a rodent model of collagen induced arthritis[J]. Bone, 2015, 73:32-41.
[59]
Garland DE, Adkins RH, Kushwaha V, et al. Risk factors for osteoporosis at the knee in the spinal cord injury population[J]. J Spinal Cord Med, 2004, 27(3): 202-206.
[60]
Barchetti F, Stagnitti A, Al Ansari N, et al. Densitometric kneecap changes after unilateral knee arthroplasty[J]. Eur Rev Med Pharmacol Sci, 2014, 18(8): 1224-1228.
[61]
Soininvaara TA, Harju KA, Miettinen HJ, et al. Periprosthetic bone mineral density changes after unicondylar knee arthroplasty[J]. Knee, 2013, 20(2): 120-127.
[62]
Mcpherson JG, Edwards WB, Prasad A, et al. Dual energy X-ray absorptiometry of the knee in spinal cord injury: methodology and correlation with quantitative computed tomography[J]. Spinal Cord, 2014, 52(11): 821-825.
[63]
中华医学会骨质疏松和骨矿盐疾病分会.原发性骨质疏松症诊疗指南(2017)[J].中国实用内科杂志201838(2):127-150.
[64]
Cirnigliaro CM, Myslinski MJ, La Fountaine MF, et al. Bone loss at the distal femur and proximal tibia in persons with spinal cord injury: imaging approaches, risk of fracture, and potential treatment options[J]. Osteoporos Int, 2017, 28(3): 747-765.
[65]
Peppler WT, Kim WJ, Ethans K, et al. Precision of dual-energy X-ray absorptiometry of the knee and heel: methodology and implications for research to reduce bone mineral loss after spinal cord injury[J]. Spinal Cord, 2017, 55(5): 483-488.
[66]
Boudenot A, Pallu S, Toumi H, et al. Tibial subchondral bone mineral density: sources of variability and reproducibility[J]. Osteoarthritis Cartilage, 2013, 21(10): 1586-1594.
[67]
Bauman WA, Cirnigliaro CM, La Fountaine MF, et al. Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study[J]. J Bone Miner Metab, 2015, 33(4): 410-421.
[68]
Yoon C, Chang MJ, Chang CB, et al. Bone mineral density around the knee joint: correlation with central bone mineral density and associated factors[J]. J Clin Densitom, 2020, 23(1): 82-91.
[69]
Doré D, Quinn S, Ding C, et al. Subchondral bone and cartilage damage: a prospective study in older adults[J]. Arthritis Rheum, 2010, 62(7): 1967-1973.
[70]
Van Meer BL, Waarsing JH, Van Eijsden WA, et al. Bone mineral density changes in the knee following anterior cruciate ligament rupture[J]. Osteoarthritis Cartilage, 2014, 22(1): 154-161.
[71]
Gibbs JC, Brown ZM, Wong A, et al. Measuring marrow density and area using peripheral quantitative computed tomography at the tibia: precision in young and older adults and individuals with spinal cord injury[J]. J Clin Densitom, 2018, 21(2):269-280.
[72]
Dudley-Javoroski S, Shields RK. Regional cortical and trabecular bone loss after spinal cord injury[J]. J Rehabil Res Dev, 2012, 49(9):1365-1376.
[73]
Gj M, Walker R, Boyd SK. Concurrent assessment of cartilage morphology and bone microarchitecture in the human knee using Contrast-Enhanced HR-pQCT imaging[J]. J Clin Densitom, 2019, 22(1): 74-85.
[74]
Kroker A, Manske SL, Mohtadi N, et al. A study of the relationship between meniscal injury and bone microarchitecture in ACL reconstructed knees[J]. Knee, 2018, 25(5): 746-756.
[75]
Schneider E, Lo GH, Sloane G, et al. Magnetic resonance imaging evaluation of weight-bearing subchondral trabecular bone in the knee[J]. Skeletal Radiol, 2011, 40(1): 95-103.
[76]
Andersen MR, Winther NS, Lind T, et al. Bone remodeling of the distal femur after uncemented total knee arthroplasty-a 2-year prospective DXA study[J]. J Clin Densitom, 2018, 21(2): 236-243.
[77]
Murahashi Y, Teramoto A, Jimbo S, et al. Denosumab prevents periprosthetic bone mineral density loss in the tibial metaphysis in total knee arthroplasty[J]. Knee, 2020, 27(2): 580-586.
[78]
Shields RK, Schlechte J, Dudley-Javoroski S, et al. Bone mineral density after spinal cord injury: a reliable method for knee measurement[J]. Arch Phys Med Rehabil, 2005, 86(10): 1969-1973.
[79]
Lohmander LS, Englund PM, Dahl LL, et al. The long-term consequence of anterior cruciate ligament and meniscus injuries:osteoarthritis[J]. Am J Sports Med, 2007, 35(10): 1756-1769.
[1] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[2] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[3] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[4] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[5] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[6] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[7] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[8] 浦路桥, 徐永清, 齐保闯, 施洪鑫, 林玮, 卜鹏飞, 白艳, 唐志方, 李川. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)计划书[J]. 中华关节外科杂志(电子版), 2023, 17(05): 747-750.
[9] 胡银华, 薛龙. 中国中老年人症状性膝骨关节炎的发病率及危险因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 470-478.
[10] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[11] 陈跃圻, 罗睿, 向涵, 余泳妍, 余挺. 骨质疏松症与牙周炎的因果关系:一项两样本孟德尔随机化研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 292-298.
[12] 王娟, 高俊, 周伊兰, 李小红, 史兵伟, 潘美珍. 血清IL-2、IL-17和骨密度关系及其对骨质疏松症的预测价值[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 295-300.
[13] 金浪, 石洁, 黄正, 贾永伟, 张建坡, 魏礼成, 金昊雷. 3D打印数字技术辅助改良交叉PVP对重度骨质疏松性椎体压缩骨折脊柱-骨盆矢状面平衡状态的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 263-268.
[14] 田明达, 吴珺, 王会娟, 张欣, 沙玉英, 陈琳, 赵宾洋. 6297名0~3岁婴幼儿超声骨密度检测结果分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 644-647.
[15] 周加军, 余永武, 周涵, 刘勇, 张凌. 甲状旁腺切除对继发性甲状旁腺功能亢进患者骨密度及骨代谢的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 706-710.
阅读次数
全文


摘要