[1] |
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J/OL]. Nat Rev Dis Primers, 2016, 2:16072. doi: 10.1038/nrdp.2016.72.
|
[2] |
Latypova A, Taghizadeh E, Becce F, et al. Patellar bone strain after total knee arthroplasty is correlated with bone mineral density and body mass index[J]. Med Eng Phys, 2019, 68:17-24.
|
[3] |
Huang CC, Jiang CC, Hsieh CH, et al. Local bone quality affects the outcome of prosthetic total knee arthroplasty[J]. J Orthop Res, 2016, 34(2):240-248.
|
[4] |
Deng ZH, Zeng C, Li YS, et al. Relation between phalangeal bone mineral density and radiographic knee osteoarthritis: a cross-sectional study[J/OL]. BMC Musculoskelet Disord, 2016, 17:71. doi: 10.1186/s12891-016-0918-x.
|
[5] |
Hahn MH, Won YY. Bone mineral density changes after total knee replacement in women over the age of 65[J]. J Bone Metab, 2013, 20(2): 105-109.
|
[6] |
Lo GH, Tassinari AM, Driban JB, et al. Cross-sectional DXA and Mr measures of tibial periarticular bone associate with radiographic knee osteoarthritis severity[J]. Osteoarthritis Cartilage, 2012, 20(7):686-693.
|
[7] |
Lavalley MP, Lo GH, Price LL, et al. Development of a clinical prediction algorithm for knee osteoarthritis structural progression in a cohort study: value of adding measurement of subchondral bone density[J/OL]. Arthritis Res Ther, 2017, 19(1): 95. doi: 10.1186/s13075-017-1291-3.
|
[8] |
Sepriano A, Roman-Blas JA, Little RD, et al. DXA in the assessment of subchondral bone mineral density in knee osteoarthritis--a semi-standardized protocol after systematic review[J]. Semin Arthritis Rheum, 2015, 45(3): 275-283.
|
[9] |
Cirnigliaro CM, Parrott JS, Myslinski MJ, et al. Relationships between T-scores at the hip and bone mineral density at the distal femur and proximal tibia in persons with spinal cord injury[J/OL]. J Spinal Cord Med, 2019:1. doi: 10.1080/10790268.2019.1669957.
|
[10] |
Clarke S, Wakeley C, Duddy J, et al. Dual-energy X-ray absorptiometry applied to the assessment of tibial subchondral bone mineral density in osteoarthritis of the knee[J]. Skeletal Radiol, 2004, 33(10): 588-595.
|
[11] |
Tat LC, Singh G, Jonathan SB, et al. Mediolateral subchondral tibial bone mineral density difference does not predict osteoarthritis progression[J]. Orthopedics, 2014, 37(4): e351-e356.
|
[12] |
Cai G, Otahal P, Cicuttini F, et al. The association of subchondral and systemic bone mineral density with osteoarthritis-related joint replacements in older adults[J]. Osteoarthritis Cartilage, 2020, 28(4): 438-445.
|
[13] |
Huang ZP, Ding CH, Li TW, et al. Current status and future prospects for disease modification in osteoarthritis[J]. Rheumatology, 2018, 57(4): 108-123.
|
[14] |
Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis[J]. Ann N Y Acad Sci, 2010, 1192: 230-237.
|
[15] |
Lee JY, Harvey WF, Price LL, et al. Relationship of bone mineral density to progression of knee osteoarthritis[J]. Arthritis Rheum, 2013, 65(6): 1541-1546.
|
[16] |
Zhai G, Blizzard L, Srikanth V, et al. Correlates of knee pain in older adults: tasmanian older adult cohort study[J]. Arthritis Rheum, 2006, 55(2): 264-271.
|
[17] |
Pauly HM, Larson BE, Coatney GA, et al. Assessment of cortical and trabecular bone changes in two models of post-traumatic osteoarthritis[J]. J Orthop Res, 2015, 33(12): 1835-1845.
|
[18] |
Fell N, Lawless BM, Cox SC, et al. The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores[J]. Osteoarthritis Cartilage, 2019, 27(3): 535-543.
|
[19] |
Shakoor N, Dua A, Thorp LE, et al. Asymmetric loading and bone mineral density at the asymptomatic knees of patients with unilateral hip osteoarthritis[J/OL]. Arthritis Rheum, 2011, 63(12): 30626. doi: 10.1002/art.30626.
|
[20] |
Omoumi P, Babel H, Jolles BM, et al. Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison of non-osteoarthritic (OA) and severe OA knees[J]. Osteoarthritis Cartilage, 2017, 25(11): 1850-1857.
|
[21] |
Wen L, Shin MH, Kang JH, et al. The relationships between bone mineral density and radiographic features of hand or knee osteoarthritis in older adults: data from the Dong-gu Study[J]. Rheumatology (Oxford), 2016, 55(3): 495-503.
|
[22] |
Burnett WD, Kontulainen S, Mclennan CE, et al. Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density[J]. Osteoarthritis Cartilage, 2015, 23(9): 1483-1490.
|
[23] |
Lo GH, Schneider E, Driban JB, et al. Periarticular bone predicts knee osteoarthritis progression: data from the osteoarthritis initiative[J]. Semin Arthritis Rheum, 2018, 48(2): 155-161.
|
[24] |
Tokgöz MA, Atik OŞ, Esendaǧlı G, et al. Is it possible that the pathogenesis of osteoarthritis could start with subchondral trabecular bone loss like osteoporosis?[J]. Eklem Hastalik Cerrahisi, 2018, 29(3):152-158. doi: 10.5606/ehc.2018.007.
|
[25] |
Lobos S, Cooke A, Simonett G, et al. Assessment of bone mineral density at the distal femur and the proximal tibia by dual-energy X-ray absorptiometry in individuals with spinal cord injury: precision of protocol and pelation to injury duration[J]. J Clin Densitom, 2018, 21(3):338-346.
|
[26] |
Weng LH, Wang CJ, Jy K, et al. Control of Dkk-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees[J]. Arthritis Rheum, 2010, 62(5): 1393-1402.
|
[27] |
Funck-Brentano T, Lin H, Hay E, et al. Targeting bone alleviates osteoarthritis in osteopenic mice and modulates cartilage catabolism[J/OL]. PLoS One, 2012, 7(3): e33543. doi: 10.1371/journal.pone.0033543.
|
[28] |
Burnett WD, Kontulainen S, Mclennan CE, et al. Knee osteoarthritis patients with more subchondral cysts have altered tibial subchondral bone mineral density[J/OL]. BMC Musculoskelet Disord, 2019, 20(1):14. doi: 10.1186/s12891-018-2388-9.
|
[29] |
Bruyere O, Dardenne C, Lejeune E, et al. Subchondral tibial bone mineral density predicts future joint space narrowing at the medial femoro-tibial compartment in patients with knee osteoarthritis[J]. Bone, 2003, 32(5):541-545.
|
[30] |
Dequeker J, Aerssens J, Luyten FP. Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship[J]. Aging Clin Exp Res, 2003, 15(5): 426-439.
|
[31] |
Lo GH, Merchant MG, Driban JB, et al. Knee alignment is quantitatively related to periarticular bone morphometry and density, especially in patients with osteoarthritis[J]. Arthritis Rheumatol, 2018, 70(2): 212-221.
|
[32] |
Sannmann F, Laredo JD, Chappard C, et al. Impact of meniscal coverage on subchondral bone mineral density of the proximal tibia in female subjects-a cross-sectional in vivo study using QCT[J/OL]. Bone, 2020, 134:115292. doi: 10.1016/j.bone.2020.115292.
|
[33] |
Ishii Y, Noguchi H, Sato J, et al. Association between bone mineral density distribution and various radiographic parameters in patients with advanced medial osteoarthritis of the knee[J]. J Orthop Sci, 2019, 24(4): 686-692.
|
[34] |
Burnett WD, Kontulainen S, Mclennan CE, et al. Proximal tibial trabecular bone mineral density is related to pain in patients with osteoarthritis[J]. Arthritis Res Ther, 2017, 19(1): 200. doi: 10.1186/s13075-017-1415-9.
|
[35] |
Shiraishi K, Chiba K, Okazaki N, et al. In vivo analysis of subchondral trabecular bone in patients with osteoarthritis of the knee using second-generation high-resolution peripheral quantitative computed tomography (HR-pQCT)[J/OL]. Bone, 2020, 132:115155. doi: 10.1016/j.bone.2019.115155.
|
[36] |
Akamatsu Y, Mitsugi N, Taki N, et al. Medial versus lateral condyle bone mineral density ratios in a cross-sectional study: a potential marker for medial knee osteoarthritis severity[J]. Arthritis Care Res (Hoboken), 2012, 64(7): 1036-1045.
|
[37] |
Thorp LE, Wimmer MA, Block JA, et al. Bone mineral density in the proximal tibia varies as a function of static alignment and knee adduction angular momentum in individuals with medial knee osteoarthritis[J]. Bone, 2006, 39(5): 1116-1122.
|
[38] |
Deveza LA, Melo L, Yamato TP, et al. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review[J]. Osteoarthritis Cartilage, 2017, 25(12): 1926-1941.
|
[39] |
Teichtahl AJ, Wang Y, Wluka AE, et al. Associations between systemic bone mineral density and early knee cartilage changes in middle-aged adults without clinical knee disease: a prospective cohort study[J]. Arthritis Res Ther, 2017, 19(1):98. doi: 10.1186/s13075-017-1314-0.
|
[40] |
Marcucci G, Brandi ML. Rare causes of osteoporosis[J]. Clin Cases Miner Bone Metab, 2015, 12(2): 151-156.
|
[41] |
Ryd L, Brittberg M, Eriksson K, et al. Pre-osteoarthritis: definition and diagnosis of an elusive clinical entity[J]. Cartilage, 2015, 6(3): 156-165.
|
[42] |
Hochberg MC, Lethbridge-Cejku M, Tobin JD. Bone mineral density and osteoarthritis: data from the Baltimore Longitudinal Study of Aging[J]. Osteoarthritis Cartilage, 2004, 12(Suppl A): S45-S48.
|
[43] |
Bergink AP, Uitterlinden AG, Van Leeuwen JP, et al. Bone mineral density and vertebral fracture history are associated with incident and progressive radiographic knee osteoarthritis in elderly men and women: the Rotterdam Study[J]. Bone, 2005, 37(4): 446-456.
|
[44] |
Lo GH, Zhang Y, Mclennan C, et al. The ratio of medial to lateral tibial plateau bone mineral density and compartment-specific tibiofemoral osteoarthritis[J]. Osteoarthritis Cartilage, 2006, 14(10): 984-990.
|
[45] |
Stewart A, Black A, Robins SP, et al. Bone density and bone turnover in patients with osteoarthritis and osteoporosis[J]. J Rheumatol, 1999, 26(3): 622-626.
|
[46] |
Im GI, Kim MK. The relationship between osteoarthritis and osteoporosis[J]. J Bone Miner Metab, 2014, 32(2): 101-109.
|
[47] |
Hayami T, Funaki H, Yaoeda K, et al. Expression of the cartilage derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis[J]. J Rheumatol, 2003, 30(10): 2207-2217.
|
[48] |
Zupan J, Van′t Hof RJ, Vindišar F, et al. Osteoarthritic versus osteoporotic bone and intra-skeletal variations in normal bone: evaluation with μCT and bone histomorphometry[J]. J Orthop Res, 2013, 31(7): 1059-1066.
|
[49] |
Wang CJ, Huang CY, Hsu SL, et al. Extracorporeal shockwave therapy in osteoporotic osteoarthritis of the knee in rats: an experiment in animals[J/OL]. Arthritis Res Ther, 2014, 16(4): R139. doi: 10.1186/ar4601.
|
[50] |
Cınar Y, Atamaz FC, Kirazli Y, et al. A comparison of the femur heads histomorphometrically regarding trabecular bone properties in the patients with osteoporosis and osteoarthritis[J]. Aging Clin Exp Res, 2016, 28(5): 997-1001.
|
[51] |
Narloch J, Wm G. Osteoarthritis changes hip geometry and biomechanics regardless of bone mineral density-a quantitative computed tomography study[J/OL]. J Clin Med, 2019, 8(5): 669. doi: 10.3390/jcm8050669.
|
[52] |
Shen Y, Zhang YH, Shen L. Postmenopausal women with osteoporosis and osteoarthritis show different microstructural characteristics of trabecular bone in proximal tibia using high-resolution magnetic resonance imaging at 3 tesla[J/OL]. BMC Musculoskelet Disord, 2013, 14:136. doi: 10.1186/1471-2474-14-136.
|
[53] |
Zhang ZM, Zc L, Jiang LS, et al. Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis[J]. Osteoporos Int, 2010, 21(8): 1383-1390.
|
[54] |
Setty N, Leboff MS, Thornhill TS, et al. Underestimated fracture probability in patients with unilateral hip osteoarthritis as calculated by FRAX[J]. J Clin Densitom, 2011, 14(4): 447-452.
|
[55] |
Povoroznyuk VV, Zaverukha NV, Musiienko AS. Bone mineral density and trabecular bone score in postmenopausal women with knee osteoarthritis and obesity[J]. Wiad Lek, 2020, 73(3): 529-533.
|
[56] |
Kim YH, Lee JS, Park JH. Association between bone mineral density and knee osteoarthritis in Koreans: the Fourth and Fifth Korea National Health and Nutrition Examination Surveys[J]. Osteoarthritis Cartilage, 2018, 26(11): 1511-1517.
|
[57] |
Bergink AP, Rivadeneira F, Bierma-Zeinstra SM, et al. Are bone mineral density and fractures related to the incidence and progression of radiographic osteoarthritis of the knee, hip, and hand in elderly men and women? The Rotterdam study[J]. Arthritis Rheumatol, 2019, 71(3): 361-369.
|
[58] |
Sevilla RS, Cruz F, Chiu C, et al. Development and optimization of a high-throughput micro-computed tomography imaging method incorporating a novel analysis technique to evaluate bone mineral density of arthritic joints in a rodent model of collagen induced arthritis[J]. Bone, 2015, 73:32-41.
|
[59] |
Garland DE, Adkins RH, Kushwaha V, et al. Risk factors for osteoporosis at the knee in the spinal cord injury population[J]. J Spinal Cord Med, 2004, 27(3): 202-206.
|
[60] |
Barchetti F, Stagnitti A, Al Ansari N, et al. Densitometric kneecap changes after unilateral knee arthroplasty[J]. Eur Rev Med Pharmacol Sci, 2014, 18(8): 1224-1228.
|
[61] |
Soininvaara TA, Harju KA, Miettinen HJ, et al. Periprosthetic bone mineral density changes after unicondylar knee arthroplasty[J]. Knee, 2013, 20(2): 120-127.
|
[62] |
Mcpherson JG, Edwards WB, Prasad A, et al. Dual energy X-ray absorptiometry of the knee in spinal cord injury: methodology and correlation with quantitative computed tomography[J]. Spinal Cord, 2014, 52(11): 821-825.
|
[63] |
中华医学会骨质疏松和骨矿盐疾病分会.原发性骨质疏松症诊疗指南(2017)[J].中国实用内科杂志,2018,38(2):127-150.
|
[64] |
Cirnigliaro CM, Myslinski MJ, La Fountaine MF, et al. Bone loss at the distal femur and proximal tibia in persons with spinal cord injury: imaging approaches, risk of fracture, and potential treatment options[J]. Osteoporos Int, 2017, 28(3): 747-765.
|
[65] |
Peppler WT, Kim WJ, Ethans K, et al. Precision of dual-energy X-ray absorptiometry of the knee and heel: methodology and implications for research to reduce bone mineral loss after spinal cord injury[J]. Spinal Cord, 2017, 55(5): 483-488.
|
[66] |
Boudenot A, Pallu S, Toumi H, et al. Tibial subchondral bone mineral density: sources of variability and reproducibility[J]. Osteoarthritis Cartilage, 2013, 21(10): 1586-1594.
|
[67] |
Bauman WA, Cirnigliaro CM, La Fountaine MF, et al. Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study[J]. J Bone Miner Metab, 2015, 33(4): 410-421.
|
[68] |
Yoon C, Chang MJ, Chang CB, et al. Bone mineral density around the knee joint: correlation with central bone mineral density and associated factors[J]. J Clin Densitom, 2020, 23(1): 82-91.
|
[69] |
Doré D, Quinn S, Ding C, et al. Subchondral bone and cartilage damage: a prospective study in older adults[J]. Arthritis Rheum, 2010, 62(7): 1967-1973.
|
[70] |
Van Meer BL, Waarsing JH, Van Eijsden WA, et al. Bone mineral density changes in the knee following anterior cruciate ligament rupture[J]. Osteoarthritis Cartilage, 2014, 22(1): 154-161.
|
[71] |
Gibbs JC, Brown ZM, Wong A, et al. Measuring marrow density and area using peripheral quantitative computed tomography at the tibia: precision in young and older adults and individuals with spinal cord injury[J]. J Clin Densitom, 2018, 21(2):269-280.
|
[72] |
Dudley-Javoroski S, Shields RK. Regional cortical and trabecular bone loss after spinal cord injury[J]. J Rehabil Res Dev, 2012, 49(9):1365-1376.
|
[73] |
Gj M, Walker R, Boyd SK. Concurrent assessment of cartilage morphology and bone microarchitecture in the human knee using Contrast-Enhanced HR-pQCT imaging[J]. J Clin Densitom, 2019, 22(1): 74-85.
|
[74] |
Kroker A, Manske SL, Mohtadi N, et al. A study of the relationship between meniscal injury and bone microarchitecture in ACL reconstructed knees[J]. Knee, 2018, 25(5): 746-756.
|
[75] |
Schneider E, Lo GH, Sloane G, et al. Magnetic resonance imaging evaluation of weight-bearing subchondral trabecular bone in the knee[J]. Skeletal Radiol, 2011, 40(1): 95-103.
|
[76] |
Andersen MR, Winther NS, Lind T, et al. Bone remodeling of the distal femur after uncemented total knee arthroplasty-a 2-year prospective DXA study[J]. J Clin Densitom, 2018, 21(2): 236-243.
|
[77] |
Murahashi Y, Teramoto A, Jimbo S, et al. Denosumab prevents periprosthetic bone mineral density loss in the tibial metaphysis in total knee arthroplasty[J]. Knee, 2020, 27(2): 580-586.
|
[78] |
Shields RK, Schlechte J, Dudley-Javoroski S, et al. Bone mineral density after spinal cord injury: a reliable method for knee measurement[J]. Arch Phys Med Rehabil, 2005, 86(10): 1969-1973.
|
[79] |
Lohmander LS, Englund PM, Dahl LL, et al. The long-term consequence of anterior cruciate ligament and meniscus injuries:osteoarthritis[J]. Am J Sports Med, 2007, 35(10): 1756-1769.
|