切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (05) : 533 -539. doi: 10.3877/cma.j.issn.1674-134X.2021.05.003

所属专题: 骨科学

临床论著

活动平台膝关节单髁置换术后蹲起活动的运动生物力学
李越1, 田润1, 杨佩1, 王坤正1,()   
  1. 1. 710004 西安交通大学第二附属医院
  • 收稿日期:2021-07-09 出版日期:2021-10-01
  • 通信作者: 王坤正

Biomechanical properties of knee after unicompartmental knee arthroplasty during squatting and standing up

Yue Li1, Run Tian1, Pei Yang1, Kunzheng Wang1,()   

  1. 1. Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
  • Received:2021-07-09 Published:2021-10-01
  • Corresponding author: Kunzheng Wang
引用本文:

李越, 田润, 杨佩, 王坤正. 活动平台膝关节单髁置换术后蹲起活动的运动生物力学[J/OL]. 中华关节外科杂志(电子版), 2021, 15(05): 533-539.

Yue Li, Run Tian, Pei Yang, Kunzheng Wang. Biomechanical properties of knee after unicompartmental knee arthroplasty during squatting and standing up[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2021, 15(05): 533-539.

目的

对活动平台膝关节单髁置换术(UKA)后中远期患者膝关节的高载荷高屈曲度活动进行运动学特性和力矩分析,以评估UKA疗效、指导术后康复进程和预期并发症。

方法

本研究是临床队列研究。选取2016年6月至2018年6月收入西安交通大学第二附属医院行初次单侧内侧间室膝关节单髁置换手术患者,纳入经影像学诊断Kellgren & Lawrence分级1或2级),排除下肢创伤、肿瘤、身体质量指数(BMI)≥26及有并发症(假体松动、感染、对侧骨关节炎进展)等病例,术后定期(12、18、24个月)随访复查并筛选功能康复状态稳定患者26例入组。应用VICON T40三维运动分析系统和AMTI压力反馈系统测量UKA患者自然下蹲动作模式下的运动学和力矩参数。同时入组健康人群22例作为对照组,双尾t检验比较UKA术后与健康肢体的蹲起模式差异。

结果

术后平均随访时间为(24.4±1.5)个月。术后一年期UKA患肢膝关节最大内翻角度(21.20±2.30)°,最大胫骨内旋角度(16.90±1.80)°,伸膝力矩峰值(0.310±0.040)N/kg,内旋力矩峰值(0.020±0.008)N/kg,均较健侧肢体和健康人群有明显降低(t=2.6,P<0.05),而内翻力矩峰值(1.220±0.050)N/kg较健侧肢体和健康人群有明显升高( t=7.9,P<0.05)。

结论

活动平台UKA在改善患侧膝关节最大屈曲角度和伸膝力矩的同时对健侧肢体的生物力学指标无明显影响。术后早期患肢深度屈曲时伸肌力矩减少,内收肌力矩增加。随康复时间增加UKA患膝的活动度和伸肌力矩趋近于健康肢体,对中、长期理想的康复结果有积极的预测意义。

Objective

To analyze knee kinematic and kinetic parameters after mobile bearing unicompartmental knee arthroplasty (UKA) during postoperative squatting-standing activity, so as to evaluate the efficacy of UKA, guide the process of postoperative rehabilitation and predict complications.

Methods

This study was a clinical cohort study. Thirty-one patients were admitted to the Second Affiliated Hospital of Xi’an Jiaotong University from June 2016 to June 2018 diagnosed with medial knee OA with primary UKA were followed up. After case screening, Kellgren & Lawrence stage one or two, lower limb trauma, tumor, excessive body mass index (BMI), and other complications were excluded, then 26 patients were recruited to take gait tests. Squatting-standing activities were performed under the test of Vicon T40 10-Camera Motion Analysis System and Advanced Medical Technology Incorporated (AMTI) force plates preoperatively at different stages after UKA (12, 18, 24 months). Twenty-two healthy subjects were enrolled as the control group, and the difference of squatting pattern between the healthy group and the UKA patients was compared by double-tail t test.

Results

The average duration of follow-up was (24.4±1.5)months. At one year follow-up, the peak values of varus angle (21.20±2.30) °, internal rotation angle (16.90±1.80) °, the torques of knee extension (0.310±0.040) N/kg and internal rotation (0.020±0.008) N/kg of the UKA knees were inferior to contralateral knees. The peak adductor moment (1.220±0.050) N/kg was superior to the contralateral knees.

Conclusions

Mobile UKA can improve the ROM and torques of the involved knee and don’t affect the biomechanical indicators of healthy limbs. OA knees show decreased torque of knee extension and increased torque of knee adduction during active deep flexion activity in early postoperative period. With rehabilitation time elongation, the patients can achieve better range of motion and more natural torques of knee extension and adduction, which may predict ideal functional outcome in medium and long terms.

图1 入组患者全身外挂式步态标记(plug-in gait marker)
图2 完整蹲起动作周期模式示意图
表1 入组对象基本临床资料统计表
表2 术后一年期随访各组角度峰值及达峰时间比较(±s)
表3 术后1年期随访各组力矩峰值及达峰时间比较(±s)
图3 各组角度和力矩的蹲起动作时相图。图A~C分别为屈曲、内翻、内旋角度的蹲起动作时相图;图D~F分别为屈曲、内翻、内旋力矩的蹲起动作时相图
图4 术后各阶段无支撑下蹲膝关节屈曲角度和伸膝力矩变化。图A为屈伸力矩随康复时间变化箱形图;图B为屈伸力矩随康复时间变化相关分析;图C为屈曲角度随康复时间变化的箱形图;图D为屈曲角度随康复时间变化的相关分析
[1]
Englund M, Turkiewicz A. Osteoarthritis increasingly common public disease[J]. Lakartidningen, 2014, 111(21):930-931.
[2]
Giwnewer U, Rubin G, Orbach H, et al. Treatment for osteoarthritis of the knee[J]. Harefuah, 2016, 155(7):403-406.
[3]
Schindler OS, Scott WN, Scuderi GR. The practice of unicompartmental knee arthroplasty in the United Kingdom[J]. J Orthop Surg (Hong Kong), 2010, 18(3):312-319.
[4]
Halawi MJ, Barsoum WK. Unicondylar knee arthroplasty: key concepts[J]. J Clin Orthop Trauma, 2017, 8(1):11-13.
[5]
Iacono F, Raspugli GF, Akkawi I, et al. Unicompartmental knee arthroplasty in patients over 75 years: a definitive solution?[J]. Arch Orthop Trauma Surg, 2016, 136(1):117-123.
[6]
Biazzo A, Manzotti A, Confalonieri N. Bi-unicompartmental versus total knee arthroplasty: long term results[J]. Acta Orthop Belg, 2018, 84(3):237-244.
[7]
Fuchs S, Tibesku CO, Frisse D, et al. Quality of life and gait after unicondylar knee prosthesis are inferior to age-matched control subjects[J]. Am J Phys Med Rehabil, 2003, 82(6):441-446.
[8]
Webster KE, Wittwer JE, Feller JA. Quantitative gait analysis after medial unicompartmental knee arthroplasty for osteoarthritis[J]. J Arthroplasty, 2003, 18(6):751-759.
[9]
Xue H, Tu Y, Ma T, et al. Up to twelve year follow-up of the Oxford phase three unicompartmental knee replacement in China: seven hundred and eight knees from an independent centre[J]. Int Orthop, 2017, 41(8):1571-1577.
[10]
Jones GG, Kotti M, Wiik AV, et al. Gait comparison of unicompartmental and total knee arthroplasties with healthy controls[J]. Bone Joint J, 2016, 98-B(10 Supple B):16-21.
[11]
Garner A, Dandridge O, Amis AA, et al. The extensor efficiency of unicompartmental, bicompartmental, and total knee arthroplasty[J]. Bone Joint Res, 2021, 10(1):1-9.
[12]
Simpson D J, Gray H, D’lima D, et al. The effect of bearing congruency, thickness and alignment on the stresses in unicompartmental knee replacements[J]. Clin Biomech (Bristol, Avon), 2008, 23(9):1148-1157.
[13]
Favre J, Jolles BM. Gait analysis of patients with knee osteoarthritis highlights a pathological mechanical pathway and provides a basis for therapeutic interventions[J]. EFORT Open Rev, 2016, 1(10):368-374.
[14]
Catani F, Benedetti MG, Bianchi L, et al. Muscle activity around the knee and gait performance in unicompartmental knee arthroplasty patients: a comparative study on fixed-and mobile-bearing designs[J]. Knee Surg Sports Traumatol Arthrosc, 2012, 20(6):1042-1048.
[15]
Fu YC, Simpson KJ, Brown C, et al. Knee moments after unicompartmental knee arthroplasty during stair ascent[J]. Clin Orthop Relat Res, 2014, 472(1):78-85.
[16]
Li Y, Kakar RS, Fu YC, et al. Knee strength, power and stair performance of the elderly 5 years after unicompartmental knee arthroplasty[J]. Eur J Orthop Surg Traumatol, 2018, 28(7):1411-1416.
[17]
Wiik AV, Aqil A, Tankard S, et al. Downhill walking gait pattern discriminates between types of knee arthroplasty: improved physiological knee functionality in UKA versus TKA[J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(6):1748-1755.
[18]
Heyse TJ, Tucker SM, Rajak Y, et al. Frontal plane stability following UKA in a biomechanical study[J]. Arch Orthop Trauma Surg, 2015, 135(6):857-865.
[19]
Fry AC, Smith JC, Schilling BK. Effect of knee position on hip and knee torques during the barbell squat[J]. J Strength Cond Res, 2003, 17(4):629-633.
[20]
Saragaglia D, Bonnin M, Dejour D, et al. Results of a French multicentre retrospective experience with four hundred and eighteen failed unicondylar knee arthroplasties[J]. Int Orthop, 2013, 37(7):1273-1278.
[1] 任俊筱, 浦路桥, 王志豪, 施洪鑫, 刘爱峰, 齐保闯, 徐永清, 李川. 机器人辅助全膝关节置换术的临床疗效对照研究[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 469-476.
[2] 高小康, 张净宇, 刘金伟, 田东牧, 胡永成, 徐卫国. 连接型人工膝关节假体运动和负重模式的演变和进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 505-516.
[3] 许亚龙, 巩栋, 陈晓涛. 超前镇痛在全膝关节置换术中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 517-523.
[4] 丁莹莹, 宋恺, 金姬延, 田华. 机器人辅助膝髋关节置换术后精细化临床护理[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 553-557.
[5] 王冰, 孙海宁, 于秀淳, 周珂, 翟凯, 苗族康. 膝骨关节炎的活动衬垫型单髁置换疗效与假体生存率[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 337-345.
[6] 张江礼, 刘金辉, 潘西庆, 刘光源, 范虓. 全膝关节置换应用智能辅助手术导航系统治疗膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 346-351.
[7] 杜伟, 廖土明, 李雄才, 关刚强, 何燊, 吴佳桥, 朱和荣. 2%利多卡因凝胶和润滑剂凝胶在女性尿流动力学检查中应用的随机对照研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 613-617.
[8] 丁荷蓓, 王珣, 陈为国. 七氟烷吸入麻醉与异丙酚静脉麻醉在儿童腹股沟斜疝手术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 570-574.
[9] 李先锋, 何懿, 程贞永, 邓国魁, 胡波, 谢红, 王莉, 王小燕, 李晓明. 右美托咪定对腹腔镜腹股沟疝修补术患者血流动力学及麻醉复苏效果的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 437-441.
[10] 罗霞, 王宝梅, 李淑景, 杨英. 特发性肺动脉高压血清PCSK9表达及预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 585-589.
[11] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[12] 鲁宁, 魏立友, 李亮, 张玉龙. 老年桡骨远端骨折小夹板治疗后早期腕关节功能恢复的相关因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 222-228.
[13] 谢浩文, 丁建英, 刘小霞, 冯毅, 姚婧. 椎旁神经阻滞对微创胃切除肥胖患者术中血流、术后应激及康复质量的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 569-573.
[14] 刘聪辉, 何浩然, 黄一诺, 张凤, 王凡月, 郝翰. 膳食铜补充对大鼠心肌梗死后心肌基质金属蛋白酶2表达水平及血流动力学的影响[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 166-172.
[15] 芦乙滨, 李梦蝶, 许明. PDCA(计划、执行、检查和处理)循环教学在内科住院医师重症超声指导血流动力学评估培训中的效果评价[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 224-228.
阅读次数
全文


摘要