切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 578 -583. doi: 10.3877/cma.j.issn.1674-134X.2020.05.010

所属专题: 文献

基础论著

臼杯假体高度对臼杯-骨界面应力应变影响的有限元分析
黄桂武1, 李文昌1, 邬培慧1, 古明晖1,()   
  1. 1. 510080 广州,中山大学附属第一医院
  • 收稿日期:2020-05-27 出版日期:2020-10-01
  • 通信作者: 古明晖
  • 基金资助:
    广东省省级科技计划项目(2016B090916002); 广东省省级科技计划项目(2017B020227005); 广东省自然科学基金(2016A030310135)

Finite element analysis of effects of stress and strain on acetabular cup-bone interface at different heights

Guiwu Huang1, Wenchang Li1, Peihui Wu1, Minghui Gu1,()   

  1. 1. Department of joint surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
  • Received:2020-05-27 Published:2020-10-01
  • Corresponding author: Minghui Gu
  • About author:
    Corresponding author: Gu Minghui, Email:
引用本文:

黄桂武, 李文昌, 邬培慧, 古明晖. 臼杯假体高度对臼杯-骨界面应力应变影响的有限元分析[J]. 中华关节外科杂志(电子版), 2020, 14(05): 578-583.

Guiwu Huang, Wenchang Li, Peihui Wu, Minghui Gu. Finite element analysis of effects of stress and strain on acetabular cup-bone interface at different heights[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(05): 578-583.

目的

探究臼杯假体模拟植入Crowe Ⅱ/Ⅲ型DDH髋臼的不同高度时臼杯-骨界面间应力和应变分布特征。

方法

基于3位Crowe Ⅱ/Ⅲ型DDH患者髋关节的CT扫描数据,利用计算机软件作髋臼三维建模,在距髋臼下缘连线垂直高度为15、21、30 mm处分别模拟植入臼杯模型,并转化为三维有限元网格模型,施加静力载荷,记录臼杯-骨界面的应力和应变数据,行配对t检验或Wilcoxon符号秩检验分析各组最大应力及应变的差异。

结果

3组臼杯模型在距髋臼下缘连线垂直高度为21 mm处的最大应力值最小,分别为患者A 10.03 Mpa、患者B 17.67 Mpa和患者C 14.99 Mpa。在安装高度为15 mm和30 mm处,臼杯的最大应力值分别为患者A 20.64、12.03 Mpa,患者B 22.06、23.02 Mpa和患者C 34.72、17.88 Mpa。对15、21、30 mm处骨质、臼杯的最大应力及应变行两两配对检验显示各组差异无统计学意义(校正后P>0.0167)。不同安装高度下臼杯假体及假体周围骨组织应变量没有明显分布规律。

结论

对于Crowe Ⅱ/Ⅲ型DDH患者行全髋关节置换术,适当上移臼杯旋转中心能减少臼杯假体最大应力。

Objective

To investigate the stress and strain feature at the acetabular cup-bone interface at different heights of the Crowes Ⅱ/Ⅲ DDH acetabular implant.

Methods

The hip CT scan data of three Crowe Ⅱ/Ⅲ DDH patients were used for acetabular three-dimensional model reconstruction, then the cup models were implanted at vertical distance of 15, 21, 30mm respectively from the inferior edge of the acetabulum. The model was transformed into a three-dimensional finite element mesh model, and applied a static load to record the stress and strain at the cup-bone interface. The differences of the stress and strain at the cup-bone interface were analyzed by paired-sample t test or Wilcoxon rank test.

Results

The minimal value of maximal stress was appeared at the vertical height of 21 mm, patient A 10.03 Mpa, patient B 17.67 Mpa and patient C 14.99 Mpa. At the height of 15mm and 30mm, the maximal values of maximal stress of the cup were as follows: patient A 20.64 and 12.03 Mpa, patient B 22.06 and 23.02 Mpa, patient C 34.72 and 17.88 Mpa. Paired-samples t test revealed no significant difference in the stress and strain at the cup-bone interface(P>0.0167, P value was corrected). There was no specific pattern on the strain of the acetabulum and the bone tissue at different heights.

Conclusion

For total hip arthroplasty in the patients with Crowe Ⅱ/Ⅲ DDH, the cup model implanted upward appropriately can decrease the maximal stress of the cup model.

图1 半骨盆三维实体模型及其与不同高度臼杯安放位置的三维实体模型。图A皮质骨三维模型;图B松质骨三维模型;图C距髋臼下缘连线垂直高度15 mm;图D距髋臼下缘连线垂直高度21 mm;图E距髋臼下缘连线垂直高度30 mm
图2 三维半骨盆和臼杯有限元网格模型(蓝色:外侧皮质骨;绿色:内侧松质骨;黄色:臼杯模型)
表1 各组有限元网格参数
表2 各部分材料属性参数
图3 三维模型边界条件和载荷(红色箭头表示施加应力方向)
图4 髋关节臼杯假体以及周围骨质部分的应力与应变分布云图。图A~C为髋关节臼杯假体以及周围骨质部分的应力分布云图:臼杯假体外上部区域可测得应力最大值,为应力集中区域(红色区域);图D~F为臼杯假体以及周围骨质部分的应变云图:臼杯假体外上部及骨质髋臼外上侧应变较其他部分稍大,但整体差异不大
表3 假体周围不同部位骨质部分最大应力与应变结果
表4 臼杯模型最大应力与应变结果
[1]
Sanchez-Sotelo J, Berry DJ, Trousdale RT, et al. Surgical treatment of developmental dysplasia of the hip in adults: II. Arthroplasty options[J]. J Am Acad Orthop Surg, 2002, 10(5): 334-344.
[2]
Bożek M, Bielecki T, Nowak R, et al. Arthroplasty in patients with congenital hip dysplasia—early evaluation of a treatment method[J]. Ortop Traumatol Rehabil, 2013, 15(1): 49-59.
[3]
Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods[J]. Sci Technol Adv Mater, 2003, 4(5): 445-454.
[4]
Oba M, Inaba Y, Kobayashi N, et al. Effect of femoral canal shape on mechanical stress distribution and adaptive bone remodelling around a cementless tapered-wedge stem[J]. Bone Joint Res, 2016, 5(9): 362-369.
[5]
Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact forces and gait patterns from routine activities[J]. J Biomech, 2001, 34(7): 859-871.
[6]
Christodoulou N, Dialetis KP, Christodoulou A. High hip center technique using a biconical threaded Zweymüller cup in osteoarthritis secondary to congenital hip disease[J]. Clin Orthop Relat Res, 2010, 468(7): 1912-1919.
[7]
Chen M, Luo ZL, Wu KR, et al. Cementless total hip arthroplasty with a high hip center for hartofilakidis type B developmental dysplasia of the hip: results of midterm follow-up[J]. J Arthroplasty, 2016, 31(5): 1027-1034.
[8]
Murayama T, Ohnishi H, Okabe S, et al. 15-year comparison of cementless total hip arthroplasty with anatomical or high cup placement for crowe I to III hip dysplasia[J]. Orthopedics, 2012, 35(3): E313-E318.
[9]
Kaneuji A, Sugimori T, Ichiseki T, et al. Minimum ten-year results of a porous acetabular component for Crowe I to III hip dysplasia using an elevated hip center[J]. J Arthroplasty, 2009, 24(2): 187-194.
[10]
Nawabi DH, Meftah M, Nam D, et al. Durable fixation achieved with medialized, high hip center cementless THAs for Crowe II and III dysplasia[J]. Clin Orthop Relat Res, 2014, 472(2): 630-636.
[11]
Bicanic G, Delimar D, Delimar M, et al. Influence of the acetabular cup position on hip load during arthroplasty in hip dysplasia[J]. Int Orthop, 2009, 33(2): 397-402.
[12]
Delp SL, Wixson RL, Komattu AV, et al. How superior placement of the joint center in hip arthroplasty affects the abductor muscles[J]. Clin Orthop Relat Res, 1996, (328): 137-146.
[13]
Kluess D, Martin H, Mittelmeier W, et al. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement[J]. Med Eng Phys, 2007, 29(4): 465-471.
[14]
Ji FS, Kawano I, Motomura G, et al. Does hip center location affect the recovery of abductor moment after total hip arthroplasty?[J]. Orthop Traumatol Surg Res, 2018, 104(8): 1149-1153.
[15]
Kelley SS. High hip center in revision arthroplasty[J]. J Arthroplasty, 1994, 9(5): 503-510.
[16]
Komiyama K, Fukushi JI, Motomura G, et al. Does high hip centre affect dislocation after total hip arthroplasty for developmental dysplasia of the hip?[J]. Int Orthop, 2019, 43(9): 2057-2063.
[17]
Galea VP, Laaksonen I, Donahue GS, et al. Developmental dysplasia treated with cementless total hip arthroplasty utilizing high hip center reconstruction: a minimum 13-Year follow-up study[J]. J Arthroplasty, 2018, 33(9): 2899-2905.
[18]
Tsukada S, Wakui M. Bulk femoral head autograft without decortication in uncemented total hip arthroplasty: seven- to ten-year results[J]. J Arthroplasty, 2012, 27(3): 437-444.e1.
[19]
Hendrich C, Mehling I, Sauer U, et al. Cementless acetabular reconstruction and structural bone-grafting in dysplastic hips[J]. J Bone Joint Surg Am, 2006, 88(2): 387-394.
[20]
Gerber SD, Harris WH. Femoral head autografting to augment acetabular deficiency in patients requiring total hip replacement. A minimum five-year and an average seven-year follow-up study[J]. J Bone Joint Surg Am, 1986, 68(8): 1241-1248.
[21]
Gallo J, Goodman SB, Konttinen YT, et al. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms[J]. Acta Biomater, 2013, 9(9): 8046-8058.
[22]
Sadoghi P, Liebensteiner M, Agreiter M, et al. Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers[J]. J Arthroplasty, 2013, 28(8): 1329-1332.
[1] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[2] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[3] 浦路桥, 徐永清, 齐保闯, 施洪鑫, 林玮, 卜鹏飞, 白艳, 唐志方, 李川. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)计划书[J]. 中华关节外科杂志(电子版), 2023, 17(05): 747-750.
[4] 郭璐琦, 赵雅琦, 李霁欣, 周兰, 林金鹏, 张子砚, 李俊杰, 王少白. 免荷矫形器对膝骨关节炎的生物力学影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 560-565.
[5] 张银银, 李颖, 李启活, 郭海威, 田瀚, 钟业霖. 髋腰综合征诊断与手术治疗的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 549-553.
[6] 陈严城, 忻慰, 李世傲, 钱嘉天, 钱齐荣, 牛大伟, 赵天磊, 符培亮. 髋膝关节置换日间手术和住院手术的倾向性匹配研究[J]. 中华关节外科杂志(电子版), 2023, 17(04): 462-469.
[7] 唐林, 吴颖斌, 潘恩豪, 卢伟杰. 发育性髋关节发育不良全髋置换髋臼假体放置的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(01): 65-70.
[8] 张起尧, 刘子文. 复杂腹壁疝的解剖和生物力学基础[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 674-676.
[9] 宗宇宁, 薛海鹏, 韩天宇, 张昊, 王帅, 马翔宇, 纪振钢, 周大鹏. 解剖状骨水泥占位器在治疗内侧柱缺失型肱骨近端骨折中的实用性的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(03): 242-251.
[10] 潘超, 张博, 韩磊, 刘俊阳, 崔鹏, 闫兵山, 田旭, 刘林涛, 东靖明. 肩锁关节脱位治疗的研究进展[J]. 中华肩肘外科电子杂志, 2023, 11(02): 186-191.
[11] 崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.
[12] 张子砚, 曾红, 许苑晶, 郭璐琦, 王金武, 王少白, 任富超, 缪伟强, 戴尅戎, 王茹. 膝关节生物力学标志物预测膝关节炎研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 315-320.
[13] 张乾龙, 王继荣, 宋晨辉, 刘修信, 任政, 刘宇哲, 阿里木江·玉素甫, 覃祺, 冉建. 两种髓内钉固定A3.1粗隆间骨折的有限元分析:增强型PFNA与InterTan[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 209-217.
[14] 孙阳, 郑晓, 李岩峰, 周凌峰, 杜震. 基于ERAS理念探讨电针联合等速肌力训练对THA术后患者髋关节功能的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(02): 92-100.
[15] 彭晨健, 张伟, 陈烁, 赵建宁, 王军. 多学科协作诊治模式在老年髋部骨折合并肾功能衰竭透析患者髋关节置换治疗中的应用[J]. 中华老年病研究电子杂志, 2023, 10(02): 19-23.
阅读次数
全文


摘要