切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 578 -583. doi: 10.3877/cma.j.issn.1674-134X.2020.05.010

所属专题: 文献

基础论著

臼杯假体高度对臼杯-骨界面应力应变影响的有限元分析
黄桂武1, 李文昌1, 邬培慧1, 古明晖1,()   
  1. 1. 510080 广州,中山大学附属第一医院
  • 收稿日期:2020-05-27 出版日期:2020-10-01
  • 通信作者: 古明晖
  • 基金资助:
    广东省省级科技计划项目(2016B090916002); 广东省省级科技计划项目(2017B020227005); 广东省自然科学基金(2016A030310135)

Finite element analysis of effects of stress and strain on acetabular cup-bone interface at different heights

Guiwu Huang1, Wenchang Li1, Peihui Wu1, Minghui Gu1,()   

  1. 1. Department of joint surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
  • Received:2020-05-27 Published:2020-10-01
  • Corresponding author: Minghui Gu
  • About author:
    Corresponding author: Gu Minghui, Email:
引用本文:

黄桂武, 李文昌, 邬培慧, 古明晖. 臼杯假体高度对臼杯-骨界面应力应变影响的有限元分析[J/OL]. 中华关节外科杂志(电子版), 2020, 14(05): 578-583.

Guiwu Huang, Wenchang Li, Peihui Wu, Minghui Gu. Finite element analysis of effects of stress and strain on acetabular cup-bone interface at different heights[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(05): 578-583.

目的

探究臼杯假体模拟植入Crowe Ⅱ/Ⅲ型DDH髋臼的不同高度时臼杯-骨界面间应力和应变分布特征。

方法

基于3位Crowe Ⅱ/Ⅲ型DDH患者髋关节的CT扫描数据,利用计算机软件作髋臼三维建模,在距髋臼下缘连线垂直高度为15、21、30 mm处分别模拟植入臼杯模型,并转化为三维有限元网格模型,施加静力载荷,记录臼杯-骨界面的应力和应变数据,行配对t检验或Wilcoxon符号秩检验分析各组最大应力及应变的差异。

结果

3组臼杯模型在距髋臼下缘连线垂直高度为21 mm处的最大应力值最小,分别为患者A 10.03 Mpa、患者B 17.67 Mpa和患者C 14.99 Mpa。在安装高度为15 mm和30 mm处,臼杯的最大应力值分别为患者A 20.64、12.03 Mpa,患者B 22.06、23.02 Mpa和患者C 34.72、17.88 Mpa。对15、21、30 mm处骨质、臼杯的最大应力及应变行两两配对检验显示各组差异无统计学意义(校正后P>0.0167)。不同安装高度下臼杯假体及假体周围骨组织应变量没有明显分布规律。

结论

对于Crowe Ⅱ/Ⅲ型DDH患者行全髋关节置换术,适当上移臼杯旋转中心能减少臼杯假体最大应力。

Objective

To investigate the stress and strain feature at the acetabular cup-bone interface at different heights of the Crowes Ⅱ/Ⅲ DDH acetabular implant.

Methods

The hip CT scan data of three Crowe Ⅱ/Ⅲ DDH patients were used for acetabular three-dimensional model reconstruction, then the cup models were implanted at vertical distance of 15, 21, 30mm respectively from the inferior edge of the acetabulum. The model was transformed into a three-dimensional finite element mesh model, and applied a static load to record the stress and strain at the cup-bone interface. The differences of the stress and strain at the cup-bone interface were analyzed by paired-sample t test or Wilcoxon rank test.

Results

The minimal value of maximal stress was appeared at the vertical height of 21 mm, patient A 10.03 Mpa, patient B 17.67 Mpa and patient C 14.99 Mpa. At the height of 15mm and 30mm, the maximal values of maximal stress of the cup were as follows: patient A 20.64 and 12.03 Mpa, patient B 22.06 and 23.02 Mpa, patient C 34.72 and 17.88 Mpa. Paired-samples t test revealed no significant difference in the stress and strain at the cup-bone interface(P>0.0167, P value was corrected). There was no specific pattern on the strain of the acetabulum and the bone tissue at different heights.

Conclusion

For total hip arthroplasty in the patients with Crowe Ⅱ/Ⅲ DDH, the cup model implanted upward appropriately can decrease the maximal stress of the cup model.

图1 半骨盆三维实体模型及其与不同高度臼杯安放位置的三维实体模型。图A皮质骨三维模型;图B松质骨三维模型;图C距髋臼下缘连线垂直高度15 mm;图D距髋臼下缘连线垂直高度21 mm;图E距髋臼下缘连线垂直高度30 mm
图2 三维半骨盆和臼杯有限元网格模型(蓝色:外侧皮质骨;绿色:内侧松质骨;黄色:臼杯模型)
表1 各组有限元网格参数
表2 各部分材料属性参数
图3 三维模型边界条件和载荷(红色箭头表示施加应力方向)
图4 髋关节臼杯假体以及周围骨质部分的应力与应变分布云图。图A~C为髋关节臼杯假体以及周围骨质部分的应力分布云图:臼杯假体外上部区域可测得应力最大值,为应力集中区域(红色区域);图D~F为臼杯假体以及周围骨质部分的应变云图:臼杯假体外上部及骨质髋臼外上侧应变较其他部分稍大,但整体差异不大
表3 假体周围不同部位骨质部分最大应力与应变结果
表4 臼杯模型最大应力与应变结果
[1]
Sanchez-Sotelo J, Berry DJ, Trousdale RT, et al. Surgical treatment of developmental dysplasia of the hip in adults: II. Arthroplasty options[J]. J Am Acad Orthop Surg, 2002, 10(5): 334-344.
[2]
Bożek M, Bielecki T, Nowak R, et al. Arthroplasty in patients with congenital hip dysplasia—early evaluation of a treatment method[J]. Ortop Traumatol Rehabil, 2013, 15(1): 49-59.
[3]
Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods[J]. Sci Technol Adv Mater, 2003, 4(5): 445-454.
[4]
Oba M, Inaba Y, Kobayashi N, et al. Effect of femoral canal shape on mechanical stress distribution and adaptive bone remodelling around a cementless tapered-wedge stem[J]. Bone Joint Res, 2016, 5(9): 362-369.
[5]
Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact forces and gait patterns from routine activities[J]. J Biomech, 2001, 34(7): 859-871.
[6]
Christodoulou N, Dialetis KP, Christodoulou A. High hip center technique using a biconical threaded Zweymüller cup in osteoarthritis secondary to congenital hip disease[J]. Clin Orthop Relat Res, 2010, 468(7): 1912-1919.
[7]
Chen M, Luo ZL, Wu KR, et al. Cementless total hip arthroplasty with a high hip center for hartofilakidis type B developmental dysplasia of the hip: results of midterm follow-up[J]. J Arthroplasty, 2016, 31(5): 1027-1034.
[8]
Murayama T, Ohnishi H, Okabe S, et al. 15-year comparison of cementless total hip arthroplasty with anatomical or high cup placement for crowe I to III hip dysplasia[J]. Orthopedics, 2012, 35(3): E313-E318.
[9]
Kaneuji A, Sugimori T, Ichiseki T, et al. Minimum ten-year results of a porous acetabular component for Crowe I to III hip dysplasia using an elevated hip center[J]. J Arthroplasty, 2009, 24(2): 187-194.
[10]
Nawabi DH, Meftah M, Nam D, et al. Durable fixation achieved with medialized, high hip center cementless THAs for Crowe II and III dysplasia[J]. Clin Orthop Relat Res, 2014, 472(2): 630-636.
[11]
Bicanic G, Delimar D, Delimar M, et al. Influence of the acetabular cup position on hip load during arthroplasty in hip dysplasia[J]. Int Orthop, 2009, 33(2): 397-402.
[12]
Delp SL, Wixson RL, Komattu AV, et al. How superior placement of the joint center in hip arthroplasty affects the abductor muscles[J]. Clin Orthop Relat Res, 1996, (328): 137-146.
[13]
Kluess D, Martin H, Mittelmeier W, et al. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement[J]. Med Eng Phys, 2007, 29(4): 465-471.
[14]
Ji FS, Kawano I, Motomura G, et al. Does hip center location affect the recovery of abductor moment after total hip arthroplasty?[J]. Orthop Traumatol Surg Res, 2018, 104(8): 1149-1153.
[15]
Kelley SS. High hip center in revision arthroplasty[J]. J Arthroplasty, 1994, 9(5): 503-510.
[16]
Komiyama K, Fukushi JI, Motomura G, et al. Does high hip centre affect dislocation after total hip arthroplasty for developmental dysplasia of the hip?[J]. Int Orthop, 2019, 43(9): 2057-2063.
[17]
Galea VP, Laaksonen I, Donahue GS, et al. Developmental dysplasia treated with cementless total hip arthroplasty utilizing high hip center reconstruction: a minimum 13-Year follow-up study[J]. J Arthroplasty, 2018, 33(9): 2899-2905.
[18]
Tsukada S, Wakui M. Bulk femoral head autograft without decortication in uncemented total hip arthroplasty: seven- to ten-year results[J]. J Arthroplasty, 2012, 27(3): 437-444.e1.
[19]
Hendrich C, Mehling I, Sauer U, et al. Cementless acetabular reconstruction and structural bone-grafting in dysplastic hips[J]. J Bone Joint Surg Am, 2006, 88(2): 387-394.
[20]
Gerber SD, Harris WH. Femoral head autografting to augment acetabular deficiency in patients requiring total hip replacement. A minimum five-year and an average seven-year follow-up study[J]. J Bone Joint Surg Am, 1986, 68(8): 1241-1248.
[21]
Gallo J, Goodman SB, Konttinen YT, et al. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms[J]. Acta Biomater, 2013, 9(9): 8046-8058.
[22]
Sadoghi P, Liebensteiner M, Agreiter M, et al. Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers[J]. J Arthroplasty, 2013, 28(8): 1329-1332.
[1] 刘涛, 樊保佑, 史仲举, 刘德荣, 王沛. 股骨距是一个容易被误解的人体结构[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 626-629.
[2] 赵飞鸿, 陈颖杰, 林静芳, 郑晓春, 廖燕凌. 超声引导下周围神经阻滞对髋膝关节置换术后恢复的影响[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 457-468.
[3] 何淳诺, 田志敏, 李焕玺, 吴昊越, 庄凯鹏, 周胜虎, 张浩强. 小儿发育性髋关节发育不良诊治的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 497-504.
[4] 高小康, 张净宇, 刘金伟, 田东牧, 胡永成, 徐卫国. 连接型人工膝关节假体运动和负重模式的演变和进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 505-516.
[5] 陈镁仪, 李伊尧, 张梦圆, 许杰, 马若凡, 李登, 顾菁. 图示化自主髋关节功能评分系统的应用研究[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 320-328.
[6] 蒋政, 郑楠, 毛彦杰, 何阿祥, 林蔚铭, 郭瀚, 刘语嫣, 臧慧, 王聪, 刘万军. 关于胫骨高位截骨术后髌股关节变化的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 398-404.
[7] 秦家麟, 吴炯, 王振宜, 金磊. 有限元法在肛肠良性疾病中的研究进展及前景展望[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 341-346.
[8] 张琛朋, 王靖, 曾塬杰, 高鹏, 陈昕彤. 反式全肩关节置换术的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 373-376.
[9] 李仁斌, 林凤飞. 反式全肩关节置换术治疗老年人3、4部分肱骨近端骨折[J/OL]. 中华肩肘外科电子杂志, 2024, 12(03): 205-210.
[10] 王曦, 关鹏飞. 双钢板内固定治疗肱骨远1/3骨折的有限元分析及基于肘关节功能和肘关节活动度评估疗效[J/OL]. 中华肩肘外科电子杂志, 2024, 12(03): 230-237.
[11] 李彦霖, 王海程, 权元元, 张一凡, 陈伟. 腰椎骨小梁生物力学特性及其在骨质疏松骨折治疗中的应用[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 243-250.
[12] 浦路桥, 李川, 齐宝闯, 卜鹏飞, 蔡兴博, 白艳, 罗欢, 徐永清. 改良与传统股方肌骨瓣治疗青壮年股骨头坏死的临床疗效比较[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(03): 165-170.
[13] 孙阳, 杨帅, 贾晋瑄, 杜震, 周凌峰, 魏贤振. 电针联合等速训练对THA术后髋关节生物力学的影响[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(02): 103-110.
[14] 权元元, 丁凯, 王海程, 李彦霖, 张一凡, 张建志, 陈伟. 骨小梁的形态结构和生物力学性能研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(02): 123-128.
[15] 林嘉敏, 丁海琦, 黄昌瑜, 陈旸, 黄颖, 张文明, 方心俞. 带间隔器生存可作为慢性PJI中无法耐受二期翻修病例的可选方案——一项单中心队列研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(02): 88-95.
阅读次数
全文


摘要