切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (02) : 173 -178. doi: 10.3877/cma.j.issn.1674-134X.2020.02.008

所属专题: 文献

基础论著

基于骨肌多体动力学前臂旋前旋后的有限元分析
罗林聪1, 彭鳒侨1,()   
  1. 1. 510120 广州医科大学附属第一医院骨外科,广东省骨科矫形技术与植入材料重点实验室
  • 收稿日期:2019-04-17 出版日期:2020-04-01
  • 通信作者: 彭鳒侨
  • 基金资助:
    全国医学研究生教育指导委员会立项(B3-20170306-03); 广东省教育厅研究生教育创新重点项目(2018JGXM79); 广州医科大学立项大学生实验室开放项目(2019)

Finite element analysis of forearm pronation and supination based on musculoskeletal dynamics of multibody

Lincong Luo1, Jianqiao Peng1,()   

  1. 1. Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Department of Orthopaedic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
  • Received:2019-04-17 Published:2020-04-01
  • Corresponding author: Jianqiao Peng
  • About author:
    Corresponding author: Peng Jianqiao, Email:
引用本文:

罗林聪, 彭鳒侨. 基于骨肌多体动力学前臂旋前旋后的有限元分析[J]. 中华关节外科杂志(电子版), 2020, 14(02): 173-178.

Lincong Luo, Jianqiao Peng. Finite element analysis of forearm pronation and supination based on musculoskeletal dynamics of multibody[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(02): 173-178.

目的

探讨前臂旋前旋后运动的肌力变化以及肱骨应力、位移的生物力学特性。

方法

根据Dicom数据在MIMICS中重建三维肱骨并在Hypermesh中划分网格和材料赋值。采用志愿者的身高、体重数据在AnyBody骨骼肌肉系统中建立个性化上肢的骨骼肌肉模型,模拟前臂旋前旋后运动,导出旋前旋后运动过程中的肌力等边界条件,将此数据作为肱骨有限元分析的边界条件。最后在Abauqus中行肱骨应力、位移大小的分析。

结果

前臂0°~90°旋前运动时主要是旋前圆肌、旋前方肌发挥作用,旋前圆肌约90°时肌肉力最大,旋前方肌约40°时肌肉力最大。当前臂0°~90°旋后运动时主要是旋后肌、肱二头肌发挥作用,二者肌肉力在旋后约90°时最大。旋前运动约90°时肱骨受到的应力、位移最大,而旋后运动约10°时肱骨受到的应力、位移最大。应力大致在肱骨中下1/3处集中,而位移集中在肱骨的中部及远端,且以肱骨远端最为明显。

结论

利用AnyBody骨骼肌肉系统成功模拟了前臂旋前旋后运动并与有限元分析联动,在肌力加载下分析肱骨应力、位移。肱骨中下段是骨折的好发部位。

Objective

To investigate the changes of muscle force and the biomechanics of the humeralstress and displacement in the pronation and supination motions of the forearm.

Methods

A three-dimensional reconstruction of humerus was performed based on Dicom data by Mimics Mesh division and material assignment were carried out in Hypermesh. According to the height and weight of volunteers, the musculoskeletal model of volunteers' individualized upper limbs was established by AnyBody. The pronation and supination of forearm were simulated. The muscle force and constraint conditions during the motion were derived. The derived data were taken as the boundary conditions of finite element analysis. Finally, the analysis of the force and displacement of the humerus was performed by Abauqus.

Results

The forearm 0°-90°pronation motion mainly plays a role in pronator teres muscle and pronator quadratus muscle. The pronator teres and pronator quadratus muscle force is the largest when the pronator is about 90°and 40°, respectively. The forearm 0°-90°supination movement is mainly caused by the supinator and biceps muscles. The muscle force of the two groups is maximum at about 90° supinator. When the pronation motion is about 90°, the stress and displacement of the humerus are the largest; when the supination is about 10°, the stress and displacement of the humerus are the largest. The stress is concentrated approximately in the lower third of the humerus; the displacement is concentrated in the middle and distal ends of the humerus, and is most prominent at the distal end of the humerus.

Conclusion

Using AnyBody musculoskeletal system, the forearm pronation and supination motion is successfully simulated and synchronized by finite element analysis, the humeral stress and displacements are analyzed by loading, which shows the mid low part of humerus is the prone site of fracture.

图2 重建肱骨模型与AnyBody模型坐标匹配
表1 前臂旋前旋后运动的肌肉力变化结果(N)
图3 前臂旋前运动肌力图
图4 前臂旋后运动肌力图
图5 前臂旋前旋后运动时肱骨受到的最大肱骨应力云图(云图颜色越深显示应力越大,颜色范围表明应力集中之处)。图A 为前臂旋前运动肱骨的最大应力分布;图B 为前臂旋后运动肱骨的最大应力分布
表2 前臂旋前后运动的肱骨最大von Mises (MPa)
表3 前臂旋前后运动的肱骨最大位移(mm)
图6 前臂旋前旋后运动时肱骨受到的最大位移云图(云图颜色越深显示位移越大,颜色范围表明位移集中之处)。图A 为前臂旋前运动肱骨的最大位移分布;图B 为前臂旋后运动肱骨的最大位移分布
[1]
Bronstein AJ, Trumble TE, Tencer AF. The effects of distal radius fracture malalignment on forearm rotation: a cadaveric study[J]. J Hand Surg Am, 1997, 22(2): 258-262.
[2]
Matsuoka J, Richard AB, Lawrence JB, et al. An analysis of symmetry of torque strength of the forearm under resisted forearm rotation in normal subjects[J]. J Hand Surg Am, 2006, 31(5): 801-805.
[3]
Damsgaard M, Rasmussen J, Christensen ST, et al. Analysis of musculoskeletal systems in the AnyBody Modeling System[J]. Simul Model PractTh, 2006, 14(8): 1100-1111.
[4]
Chu, Richard EH. A method to determine whether a musculoskeletal model can resist arbitrary external loadings within a prescribed range[J]. Comput Methods Biomech Biomed Engin, 2010, 13(6): 795-802.
[5]
吕国敏.基于AnyBody的汽车驾驶员坐姿力学特性建模及坐姿支撑设计[D],山东大学,2016.
[6]
Shi D, Wang F, Wang D, et al. 3-D finite element analysis of the influence of synovial condition in sacroiliac joint on the load transmission in human pelvic system [J]. Medical Engineering & Physics, 2014, 36(6): 745-753.
[7]
Li J, Stewart TD, Jin Z, et al. The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers [J]. J Biomech, 2013, 46(10): 1641-1647.
[8]
Wirtz DC, Schiffers N, Pandorf T, et al. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur[J]. J Biomech, 2000, 33(10): 1325-1330.
[9]
KnauΒ P. Material properties and strength behaviour of spongy bone tissue at the coxal human femur. (author'stransl)[J]. Biomed Tech (Berl), 1981, 26(9): 200-210.
[10]
Zhao LM, Tian DM, Yue W, et al. Biomechanical analysis of a novel intercalary prosthesis for humeral diaphyseal segmental defect reconstruction[J]. Orthop Surg, 2018, 10(1): 23-31.
[11]
O'sullivan LW, Gallwey TJ. Forearm torque strengths and discomfort profiles in pronation and supination[J]. Ergonomics, 2005, 48(6): 703-721.
[12]
Haugstvedt JR, Berger RA, Berglund LJ, et al. A mechanical study of the moment-forces of the supinators and pronators of the forearm[J]. Acta Orthop Scand, 2001, 72 (6), 629-634.
[13]
Bader J, Michael RB, Greybe D, et al. Muscle activity during maximal isometric forearm rotation using a power grip[J]. J Biomech, 2018, 68(8): 24-32.
[14]
Gordon KD, Richard DP, Johnson JA, et al. Electromyographic activity and strength during maximum isometric pronation and supination efforts in healthy adults[J]. J Orthop Res, 2004, 22(1): 208-213.
[15]
Damon S, Moataz E, Shihab A. Development and validation of a three dimensional dynamic biomechanical lifting model for lower back evaluation for careful box placement[J]. Int J Ind Ergon, 2016, 54(6): 10-18.
[16]
Dubowsky SR, Rasmussen J, Sisto SA, et al. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces[J]. J Biomech, 2008, 41(14): 2981-2988.
[17]
Chander DS, Cavatorta MP.Multi-directional one-handed strength assessments using AnyBody Modeling Systems[J]. Appl Ergon, 2018, 67(1): 225-236.
[18]
Bassani T, Stucovitz E, Qian ZH, et al. Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4 L5 level[J]. J Biomech, 2017, 58(14): 89-96.
[19]
Saraswat P, Andersen MS, Macwilliams BA. A musculoskeletal foot model for clinical gait analysis[J]. J Biomech, 2010, 43(9): 1645-1652.
[20]
刘述芝,胡志刚,张健.冲击载荷作用下运动员下肢动态响应的逆向动力学仿真[J].医用生物力学,2015,30(1): 30-37.
[21]
单丽君,胡忠安.基于AnyBody的髋关节康复训练肌肉力的分析[J].大连交通大学学报,2014,35(1): 50-52.
[1] 谢环宇, 傅子财, 黄勇, 刘澍雨, 王辰, 孙一嘉, 王大平, 王满宜, 杨雷, 朱伟民. 前交叉韧带重建术后评估何时重返运动指标的研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(05): 599-604.
[2] 焦义, 杨治涛, 罗伦, 李续, 于厚华, 程环宇. 肌力平衡疗法干预全髋关节置换术后下肢功能[J]. 中华关节外科杂志(电子版), 2021, 15(03): 350-354.
[3] 谢海玲, 冯琳丽, 王燕精, 周娃梅. 呼吸运动锻炼对COPD患者呼吸肌力量、运动能力及生活质量的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 269-271.
[4] 陈立秀, 吕坤, 谢勇, 刘华, 何静. 肺叶切除术后患者肺功能与膈肌活动度相关性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 577-579.
[5] 宗宇宁, 薛海鹏, 韩天宇, 张昊, 王帅, 马翔宇, 纪振钢, 周大鹏. 解剖状骨水泥占位器在治疗内侧柱缺失型肱骨近端骨折中的实用性的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(03): 242-251.
[6] 王晨, 潘海乐. 肩袖三维有限元模型建立及力学分析[J]. 中华肩肘外科电子杂志, 2022, 10(03): 221-225.
[7] 张乾龙, 王继荣, 宋晨辉, 刘修信, 任政, 刘宇哲, 阿里木江·玉素甫, 覃祺, 冉建. 两种髓内钉固定A3.1粗隆间骨折的有限元分析:增强型PFNA与InterTan[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 209-217.
[8] 耿倩, 鹿青, 李莎, 臧雅静, 顾聚源. 循环渐进式康复策略促进前交叉韧带重建术后患者下肢功能恢复的临床研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(02): 101-107.
[9] 孙阳, 郑晓, 李岩峰, 周凌峰, 杜震. 基于ERAS理念探讨电针联合等速肌力训练对THA术后患者髋关节功能的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(02): 92-100.
[10] 朱燕宾, 程晓东, 王宇钏, 王忠正, 李泳龙, 李会杰, 王娟, 吕红芝, 陈伟, 张英泽. 股骨头部分置换术精准微创治疗中老年ARCO Ⅲ期股骨头缺血坏死的有限元分析[J]. 中华老年骨科与康复电子杂志, 2022, 08(05): 257-259.
[11] 杜兵, 马腾, 路遥, 张聪明, 许毅博, 黄强, 姬帅, 李明, 任程, 王谦, 张堃, 李忠. 新型股骨颈内固定系统与3枚空心钉加内侧钢板固定青壮年Pauwels Ⅲ型股骨颈骨折的有限元分析[J]. 中华老年骨科与康复电子杂志, 2021, 07(06): 333-338.
[12] 王晖, 杨朝旭, 孟凡涛. 胫骨托盘的不同结构设计对胫骨应力分布的影响[J]. 中华老年骨科与康复电子杂志, 2020, 06(06): 321-326.
[13] 苏小平, 潘世琴, 蒋明霞, 孙丽娟, 孙晓林. ICU患者住院期间肢体握力及拉力的变化趋势[J]. 中华重症医学电子杂志, 2021, 07(02): 149-152.
[14] 李林雪, 朱亦堃. 肌肉减少症与维生素D关系的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(01): 61-64.
[15] 李蕾, 柳娟, 陆悦. 血清维生素D水平对维持性血液透析患者下肢肌力减退的预测作用[J]. 中华诊断学电子杂志, 2022, 10(03): 197-201.
阅读次数
全文


摘要