[1] |
Hartmann C,Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton[J]. Cell, 2001, 104(3): 341-351.
|
[2] |
Goldring MB,Tsuchimochi K,Ijiri K. The control of chondrogenesis[J]. J Cell Biochem, 2006, 97(1): 33-44.
|
[3] |
Akiyama H,Chaboissier MC,Martin JF, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6[J]. Genes Dev, 2002, 16(21): 2813-2828.
|
[4] |
Lefebvre V,Smits P. Transcriptional control of chondrocyte fate and differentiation[J]. Birth Defects Res C Embryo Today,2005, 75(200): 200-212.
|
[5] |
Han Y,Lefebvre V. L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer[J]. Mol Cell Biol, 2008, 28(16): 4999-5013.
|
[6] |
Dy P,Smits P,Silvester A, et al. Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage[J]. Dev Biol, 2010, 341(2): 346-359.
|
[7] |
Pacifici M,Koyama E,Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries[J]. Birth Defects Res C Embryo Today, 2005, 75(3):237-248.
|
[8] |
Pitsillides AA,Ashhurst DE. A critical evaluation of specific aspects of joint development[J].Dev Dyn, 2008, 237(9): 2284-2294.
|
[9] |
Archer CW,Dowthwaite GP,Francis-West P. Development of synovial joints[J]. Birth Defects Res C Embryo Today, 2003, 69(2): 144-155.
|
[10] |
Bland YS,Ashhurst DE. Development and ageing of the articular cartilage of the rabbit knee joint: distribution of the fibrillar collagens[J]. Anat Embryol (Berl), 1996, 194(6): 607-619.
|
[11] |
Francis-West PH,Parish J,Lee K, et al. BMP/GDF-signaling interactions during synovial joint development[J]. Cell Tissue Res, 1999, 296(1): 111-119.
|
[12] |
Andersen H. Histochemical studies on the histogenesis of the knee joint and superior tibio-fibular joint in human foetuses[J]. Acta Anat (Basel), 1961, 46: 279-303.
|
[13] |
Mitrovic D. Development of the diarthrodial joints in the rat embryo[J]. Am J Anat, 1978, 151: 475-485.
|
[14] |
Edwards JC,Wilkinson LS,Jones HM, et al. The formation of human synovial joint cavities:a possible role for hyaluronan and CD44 in altered interzone cohesion[J]. J Anat, 1994, 185(Pt 2): 355-367.
|
[15] |
Guo X,Day TF,Jiang X, et al. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation[J]. Genes Dev, 2004, 18(19): 2404-2417.
|
[16] |
Spater D,Hill TP,Gruber M, et al. Role of canonical Wnt-signaling in joint formation[J]. European Cells & Materials, 2006, 12: 71-80.
|
[17] |
Tamamura Y,Otani T,Kanatani N, et al. Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification[J]. J Biol Chem, 2005, 280(19): 19185-19195.
|
[18] |
Day TF,Guo XZ,Garrett-Beal L, et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis[J]. Dev Cell, 2005, 8(5): 739-750.
|
[19] |
Koyama E,Shibukawa Y,Nagayama M, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis[J]. Dev Biol, 2008, 316(1): 62-73.
|
[20] |
Storm EE,Kingsley DM. GDF5 coordinates bone and joint formation during digit development[J]. Dev Biol,1999, 209(1): 11-27.
|
[21] |
Seo HS,Serra R. Deletion of TGFbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints[J]. Dev Biol, 2007, 310(2): 304-316.
|
[22] |
Serra R,Chang C. TGF-beta signaling in human skeletal and patterning disorders[J]. Birth Defects Res C Embryo Today, 2003, 69(4): 333-351.
|
[23] |
Edwards CJ,Francis-West PH. Bone morphogenetic proteins in the development and healing of synovial joints[J]. Semin Arthritis Rheum, 2001, 31(1): 33-42.
|
[24] |
Francis-West PH,Abdelfattah A,Chen P, et al. Mechanisms of GDF-5 action during skeletal development[J]. Development,1999, 126(6): 1305-1315.
|
[25] |
Hogan BL. Bone morphogenetic proteins: multifunctional regulators of vertebrate development[J]. Genes Dev, 1996, 10(13): 1580-1594.
|
[26] |
Storm EE,Kingsley DM. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family[J]. Development, 1996, 122(12): 3969-3979.
|
[27] |
Zou HY,Wieser R,Massague J, et al. Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage[J]. Genes Dev, 1997, 11(17): 2191-2203.
|
[28] |
Merino R,Macias D,Ganan Y, et al. Expression and function of GDF-5 during digit skeletogenesis in the embryonic chick leg bud[J]. Dev Biol, 1999, 206(1): 33-45.
|
[29] |
Koyama E,Ochiai T,Rountree RB, et al. Synovial joint formation during mouse limb skeletogenesis-roles of Indian hedgehog signaling[J]. Ann N Y Acad Sci, 2007, 1116:100-112.
|
[30] |
Rountree RB,Schoor M,Chen H, et al. BMP receptor signaling is required for postnatal maintenance of articular cartilage[J/OL]. PLoS Biol, 2004, 2(11): e355. doi: 10.1371/journal.pbio.0020355
|
[31] |
Brunet LJ,McMahon JA,McMahon AP, et al. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton[J]. Science, 1998, 280(5368): 1455-1457.
|
[32] |
Gong YQ,Krakow D,Marcelino J, et al. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis[J]. Nat Genet, 1999, 21(3): 302-304.
|
[33] |
Seki K,Hata A. Indian hedgehog gene is a target of the bone morphogenetic protein signaling pathway[J]. J Biol Chem, 2004, 279(18): 18544-18549.
|
[34] |
Vortkamp A,Lee K,Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein[J]. Science, 1996, 273(5275): 613-622.
|
[35] |
St-Jacques B,Hammerschmidt M,McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation[J]. Genes Dev, 1999, 13(16): 2072-2086.
|
[36] |
Koyama E,Young B,Nagayama M, et al. Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis[J]. Development, 2007, 134(11): 2159-2169.
|
[37] |
Lizarraga G,Lichtler A,Upholt WB, et al. Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb[J]. Dev Biol, 2002, 243(1): 44-54.
|
[38] |
Mitrovic DR. Development of the metatarsophalangeal joint of the chick embryo: morphological, ultrastructural and histochemical studies[J]. Am J Anat, 1977, 150(2): 333-347.
|
[39] |
Ito MM,Kida MY. Morphological and biochemical re-evaluation of the process of cavitation in the rat knee joint: cellular and cell strata alterations in the interzone[J]. J Anat, 2000, 197(Pt 4): 659-679.
|
[40] |
Kavanagh E,Abiri M,Bland YS, et al. Division and death of cells in developing synovial joints and long bones[J]. Cell Biol Int, 2002, 26(8): 679-688.
|
[41] |
Edwards JC,Wilkinson LS,Soothill P, et al. Matrix metalloproteinases in the formation of human synovial joint cavities[J]. J Anat, 1996, 188(2): 355-360.
|
[42] |
Matsumoto K,Li YC,Jakuba C, et al. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb[J]. Development, 2009, 136(16): 2825-2835.
|
[43] |
Archer CW,Morrison H,Pitsillides AA. Cellular aspects of the development of diarthrodial joints and articular cartilage[J]. J Anat, 1994, 184(Pt 3): 447-456.
|
[44] |
Pitsillides AA. Identifying and characterizing the joint cavity-forming cell[J]. Cell Biochem Funct, 2003, 21(3): 235-240.
|
[45] |
Pitsillides AA,Archer CW,Prehm P, et al. Alterations in hyaluronan synthesis during developing joint cavitation [J]. J Histochem Cytochem, 1995, 43(3): 263-273.
|
[46] |
Mundy C,Yasuda T,Kinumatsu TA, et al. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine[J]. Dev Biol, 2011, 351(1): 70-81.
|
[47] |
Pitsillides AA. Early effects of embryonic movement: `a shot out of the dark’[J]. J Anat, 2006, 208(4): 417-431.
|
[48] |
Kahn J,Shwartz Y,Blitz E, et al. Muscle contraction is necessary to maintain joint progenitor cell fate[J]. Dev Cell, 2009, 16(5): 734-743.
|
[49] |
Davis AP,Witte DP,Hsieh-Li HM, et al. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11[J]. Nature, 1995, 375(6534):791-795.
|
[50] |
Koyama E,Yasuda T,Minugh-Purvis N, et al. Hox11 genes establish synovial joint organization and phylogenetic characteristics in developing mouse zeugopod skeletal elements[J]. Development, 2010, 137(22): 3795-3800.
|
[51] |
Koyama E,Yasuda T,Wellik DM, et al. Hox11 paralogous genes are required for formation of wrist and ankle joints and articular surface organization[J]. Ann N Y Acad Sci, 2010, 1192: 307-316.
|
[52] |
Pazin DE,Gamer LW,Cox KA, et al. Molecular profiling of synovial joints: Use of microarray analysis to identify factors that direct the development of the knee and elbow[J]. Dev Dyn, 2012, 241(11): 1816-1826.
|
[53] |
Goldring MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis[J]. Ther Adv Musculoskelet Dis, 2012, 4(4): 269-285.
|
[54] |
Hunziker EB. Growth plate structure and function[J]. Pathol Immunopathol Res, 1988, 7(1-2): 9-13.
|
[55] |
Hyde G,Dover S,Aszodi A, et al. Lineage tracing using matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms[J]. Dev Biol, 2007, 304(2): 825-833.
|
[56] |
Aszodi A,Bateman JF,Hirsch E, et al. Normal skeletal development of mice lacking matrilin 1: redundant function of matrilins in cartilage?[J]. Mol Cell Biol, 1999, 19(11): 7841-7845.
|
[57] |
Murphy JM,Heinegard R,McIntosh A, et al. Distribution of cartilage molecules in the developing mouse joint[J]. Matrix Biol, 1999, 18(5): 487-497.
|
[58] |
Pacifici M,Koyama E,Shibukawa Y, et al. Cellular and molecular mechanisms of synovial joint and articular cartilage formation[J]. Ann N Y Acad Sci, 2006, 1068:74-86.
|
[59] |
Sharrocks AD,Brown AL,Ling Y, et al. The ETS-domain transcription factor family[J]. Int J Biochem Cell Biol, 1997, 29(12): 1371-1387.
|
[60] |
Pfander D,Swoboda B,Kirsch T. Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes[J]. Am J Pathol, 2001, 159(5): 1777-1783.
|