切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 342 -347. doi: 10.3877/cma.j.issn.1674-134X.2019.03.014

所属专题: 文献

综述

滑膜关节与关节软骨的形成
孙剑1, 魏垒1,()   
  1. 1. 030001 太原,山西医科大学第二医院
  • 收稿日期:2018-04-10 出版日期:2019-06-01
  • 通信作者: 魏垒
  • 基金资助:
    山西医科大学第二医院博士基金(201801-1)

Formation of synovial joints and articular cartilage

Jian Sun1, Lei Wei1,()   

  1. 1. The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2018-04-10 Published:2019-06-01
  • Corresponding author: Lei Wei
  • About author:
    Corresponding author: Wei Lei, Email:
引用本文:

孙剑, 魏垒. 滑膜关节与关节软骨的形成[J]. 中华关节外科杂志(电子版), 2019, 13(03): 342-347.

Jian Sun, Lei Wei. Formation of synovial joints and articular cartilage[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2019, 13(03): 342-347.

膜关节是人体的重要组成部分,虽然数量很少,但是它们都有独特的生物力学结构和功能。近几十年来滑膜关节一直是骨科领域研究的热点,这充分体现了关节对维持人类机体功能和生活质量的重要性,但是目前对胚胎发育过程中滑膜关节的形成机制依然知之甚少。本文对滑膜关节与关节软骨形成机制的研究进展作一综述。

Synovial joint is an important part of human body, although the number is very small, but they all have unique biomechanical structure and function. In recent decades, synovial joint has been a hot topic in orthopedics research field, which is a reflection of their fundamental importance for organism function and quality of life. Regrettably, what continues to be poorly understood are the mechanisms by which synovial joints actually form in the developing embryo. This review focused on recent advances in understanding the mechanisms of synovial joint and articular cartilage formation.

图1 滑膜关节形成的主要步骤
[1]
Hartmann C,Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton[J]. Cell, 2001, 104(3): 341-351.
[2]
Goldring MB,Tsuchimochi K,Ijiri K. The control of chondrogenesis[J]. J Cell Biochem, 2006, 97(1): 33-44.
[3]
Akiyama H,Chaboissier MC,Martin JF, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6[J]. Genes Dev, 2002, 16(21): 2813-2828.
[4]
Lefebvre V,Smits P. Transcriptional control of chondrocyte fate and differentiation[J]. Birth Defects Res C Embryo Today,2005, 75(200): 200-212.
[5]
Han Y,Lefebvre V. L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer[J]. Mol Cell Biol, 2008, 28(16): 4999-5013.
[6]
Dy P,Smits P,Silvester A, et al. Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage[J]. Dev Biol, 2010, 341(2): 346-359.
[7]
Pacifici M,Koyama E,Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries[J]. Birth Defects Res C Embryo Today, 2005, 75(3):237-248.
[8]
Pitsillides AA,Ashhurst DE. A critical evaluation of specific aspects of joint development[J].Dev Dyn, 2008, 237(9): 2284-2294.
[9]
Archer CW,Dowthwaite GP,Francis-West P. Development of synovial joints[J]. Birth Defects Res C Embryo Today, 2003, 69(2): 144-155.
[10]
Bland YS,Ashhurst DE. Development and ageing of the articular cartilage of the rabbit knee joint: distribution of the fibrillar collagens[J]. Anat Embryol (Berl), 1996, 194(6): 607-619.
[11]
Francis-West PH,Parish J,Lee K, et al. BMP/GDF-signaling interactions during synovial joint development[J]. Cell Tissue Res, 1999, 296(1): 111-119.
[12]
Andersen H. Histochemical studies on the histogenesis of the knee joint and superior tibio-fibular joint in human foetuses[J]. Acta Anat (Basel), 1961, 46: 279-303.
[13]
Mitrovic D. Development of the diarthrodial joints in the rat embryo[J]. Am J Anat, 1978, 151: 475-485.
[14]
Edwards JC,Wilkinson LS,Jones HM, et al. The formation of human synovial joint cavities:a possible role for hyaluronan and CD44 in altered interzone cohesion[J]. J Anat, 1994, 185(Pt 2): 355-367.
[15]
Guo X,Day TF,Jiang X, et al. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation[J]. Genes Dev, 2004, 18(19): 2404-2417.
[16]
Spater D,Hill TP,Gruber M, et al. Role of canonical Wnt-signaling in joint formation[J]. European Cells & Materials, 2006, 12: 71-80.
[17]
Tamamura Y,Otani T,Kanatani N, et al. Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification[J]. J Biol Chem, 2005, 280(19): 19185-19195.
[18]
Day TF,Guo XZ,Garrett-Beal L, et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis[J]. Dev Cell, 2005, 8(5): 739-750.
[19]
Koyama E,Shibukawa Y,Nagayama M, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis[J]. Dev Biol, 2008, 316(1): 62-73.
[20]
Storm EE,Kingsley DM. GDF5 coordinates bone and joint formation during digit development[J]. Dev Biol,1999, 209(1): 11-27.
[21]
Seo HS,Serra R. Deletion of TGFbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints[J]. Dev Biol, 2007, 310(2): 304-316.
[22]
Serra R,Chang C. TGF-beta signaling in human skeletal and patterning disorders[J]. Birth Defects Res C Embryo Today, 2003, 69(4): 333-351.
[23]
Edwards CJ,Francis-West PH. Bone morphogenetic proteins in the development and healing of synovial joints[J]. Semin Arthritis Rheum, 2001, 31(1): 33-42.
[24]
Francis-West PH,Abdelfattah A,Chen P, et al. Mechanisms of GDF-5 action during skeletal development[J]. Development,1999, 126(6): 1305-1315.
[25]
Hogan BL. Bone morphogenetic proteins: multifunctional regulators of vertebrate development[J]. Genes Dev, 1996, 10(13): 1580-1594.
[26]
Storm EE,Kingsley DM. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family[J]. Development, 1996, 122(12): 3969-3979.
[27]
Zou HY,Wieser R,Massague J, et al. Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage[J]. Genes Dev, 1997, 11(17): 2191-2203.
[28]
Merino R,Macias D,Ganan Y, et al. Expression and function of GDF-5 during digit skeletogenesis in the embryonic chick leg bud[J]. Dev Biol, 1999, 206(1): 33-45.
[29]
Koyama E,Ochiai T,Rountree RB, et al. Synovial joint formation during mouse limb skeletogenesis-roles of Indian hedgehog signaling[J]. Ann N Y Acad Sci, 2007, 1116:100-112.
[30]
Rountree RB,Schoor M,Chen H, et al. BMP receptor signaling is required for postnatal maintenance of articular cartilage[J/OL]. PLoS Biol, 2004, 2(11): e355. doi: 10.1371/journal.pbio.0020355
[31]
Brunet LJ,McMahon JA,McMahon AP, et al. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton[J]. Science, 1998, 280(5368): 1455-1457.
[32]
Gong YQ,Krakow D,Marcelino J, et al. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis[J]. Nat Genet, 1999, 21(3): 302-304.
[33]
Seki K,Hata A. Indian hedgehog gene is a target of the bone morphogenetic protein signaling pathway[J]. J Biol Chem, 2004, 279(18): 18544-18549.
[34]
Vortkamp A,Lee K,Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein[J]. Science, 1996, 273(5275): 613-622.
[35]
St-Jacques B,Hammerschmidt M,McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation[J]. Genes Dev, 1999, 13(16): 2072-2086.
[36]
Koyama E,Young B,Nagayama M, et al. Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis[J]. Development, 2007, 134(11): 2159-2169.
[37]
Lizarraga G,Lichtler A,Upholt WB, et al. Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb[J]. Dev Biol, 2002, 243(1): 44-54.
[38]
Mitrovic DR. Development of the metatarsophalangeal joint of the chick embryo: morphological, ultrastructural and histochemical studies[J]. Am J Anat, 1977, 150(2): 333-347.
[39]
Ito MM,Kida MY. Morphological and biochemical re-evaluation of the process of cavitation in the rat knee joint: cellular and cell strata alterations in the interzone[J]. J Anat, 2000, 197(Pt 4): 659-679.
[40]
Kavanagh E,Abiri M,Bland YS, et al. Division and death of cells in developing synovial joints and long bones[J]. Cell Biol Int, 2002, 26(8): 679-688.
[41]
Edwards JC,Wilkinson LS,Soothill P, et al. Matrix metalloproteinases in the formation of human synovial joint cavities[J]. J Anat, 1996, 188(2): 355-360.
[42]
Matsumoto K,Li YC,Jakuba C, et al. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb[J]. Development, 2009, 136(16): 2825-2835.
[43]
Archer CW,Morrison H,Pitsillides AA. Cellular aspects of the development of diarthrodial joints and articular cartilage[J]. J Anat, 1994, 184(Pt 3): 447-456.
[44]
Pitsillides AA. Identifying and characterizing the joint cavity-forming cell[J]. Cell Biochem Funct, 2003, 21(3): 235-240.
[45]
Pitsillides AA,Archer CW,Prehm P, et al. Alterations in hyaluronan synthesis during developing joint cavitation [J]. J Histochem Cytochem, 1995, 43(3): 263-273.
[46]
Mundy C,Yasuda T,Kinumatsu TA, et al. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine[J]. Dev Biol, 2011, 351(1): 70-81.
[47]
Pitsillides AA. Early effects of embryonic movement: `a shot out of the dark’[J]. J Anat, 2006, 208(4): 417-431.
[48]
Kahn J,Shwartz Y,Blitz E, et al. Muscle contraction is necessary to maintain joint progenitor cell fate[J]. Dev Cell, 2009, 16(5): 734-743.
[49]
Davis AP,Witte DP,Hsieh-Li HM, et al. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11[J]. Nature, 1995, 375(6534):791-795.
[50]
Koyama E,Yasuda T,Minugh-Purvis N, et al. Hox11 genes establish synovial joint organization and phylogenetic characteristics in developing mouse zeugopod skeletal elements[J]. Development, 2010, 137(22): 3795-3800.
[51]
Koyama E,Yasuda T,Wellik DM, et al. Hox11 paralogous genes are required for formation of wrist and ankle joints and articular surface organization[J]. Ann N Y Acad Sci, 2010, 1192: 307-316.
[52]
Pazin DE,Gamer LW,Cox KA, et al. Molecular profiling of synovial joints: Use of microarray analysis to identify factors that direct the development of the knee and elbow[J]. Dev Dyn, 2012, 241(11): 1816-1826.
[53]
Goldring MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis[J]. Ther Adv Musculoskelet Dis, 2012, 4(4): 269-285.
[54]
Hunziker EB. Growth plate structure and function[J]. Pathol Immunopathol Res, 1988, 7(1-2): 9-13.
[55]
Hyde G,Dover S,Aszodi A, et al. Lineage tracing using matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms[J]. Dev Biol, 2007, 304(2): 825-833.
[56]
Aszodi A,Bateman JF,Hirsch E, et al. Normal skeletal development of mice lacking matrilin 1: redundant function of matrilins in cartilage?[J]. Mol Cell Biol, 1999, 19(11): 7841-7845.
[57]
Murphy JM,Heinegard R,McIntosh A, et al. Distribution of cartilage molecules in the developing mouse joint[J]. Matrix Biol, 1999, 18(5): 487-497.
[58]
Pacifici M,Koyama E,Shibukawa Y, et al. Cellular and molecular mechanisms of synovial joint and articular cartilage formation[J]. Ann N Y Acad Sci, 2006, 1068:74-86.
[59]
Sharrocks AD,Brown AL,Ling Y, et al. The ETS-domain transcription factor family[J]. Int J Biochem Cell Biol, 1997, 29(12): 1371-1387.
[60]
Pfander D,Swoboda B,Kirsch T. Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes[J]. Am J Pathol, 2001, 159(5): 1777-1783.
[1] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[2] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[3] 金鑫, 谢卯, 刘芸, 杨操, 杨述华, 许伟华. 个性化股骨导向器辅助初次全髋关节置换的随机对照研究[J]. 中华关节外科杂志(电子版), 2023, 17(06): 780-787.
[4] 邓华梅, 袁札根, 曾德荣, 潘珊珊, 张葆青, 欧爱华, 曹学伟. 全膝关节置换术中气压止血带应用效果与影响因素分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 788-794.
[5] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[6] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[7] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[8] 陈山林, 魏绮珮, 刘畅. 腕关节假体:路在何方?[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 469-475.
[9] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[10] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[11] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[12] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[13] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
[14] 许瑛杰, 朱佳, 康闽, 侯俊, 苏改秀, 李胜男, 张丹, 赖建铭. 风湿病合并消化道穿孔患儿的临床特点分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 648-654.
[15] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
阅读次数
全文


摘要