切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 342 -347. doi: 10.3877/cma.j.issn.1674-134X.2019.03.014

所属专题: 文献

综述

滑膜关节与关节软骨的形成
孙剑1, 魏垒,1   
  1. 1. 030001 太原,山西医科大学第二医院
  • 收稿日期:2018-04-10 出版日期:2019-06-01
  • 通信作者: 魏垒
  • 基金资助:
    山西医科大学第二医院博士基金(201801-1)

Formation of synovial joints and articular cartilage

Jian Sun1, Lei Wei,1   

  1. 1. The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2018-04-10 Published:2019-06-01
  • Corresponding author: Lei Wei
  • About author:
    Corresponding author: Wei Lei, Email:
引用本文:

孙剑, 魏垒. 滑膜关节与关节软骨的形成[J/OL]. 中华关节外科杂志(电子版), 2019, 13(03): 342-347.

Jian Sun, Lei Wei. Formation of synovial joints and articular cartilage[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2019, 13(03): 342-347.

膜关节是人体的重要组成部分,虽然数量很少,但是它们都有独特的生物力学结构和功能。近几十年来滑膜关节一直是骨科领域研究的热点,这充分体现了关节对维持人类机体功能和生活质量的重要性,但是目前对胚胎发育过程中滑膜关节的形成机制依然知之甚少。本文对滑膜关节与关节软骨形成机制的研究进展作一综述。

Synovial joint is an important part of human body, although the number is very small, but they all have unique biomechanical structure and function. In recent decades, synovial joint has been a hot topic in orthopedics research field, which is a reflection of their fundamental importance for organism function and quality of life. Regrettably, what continues to be poorly understood are the mechanisms by which synovial joints actually form in the developing embryo. This review focused on recent advances in understanding the mechanisms of synovial joint and articular cartilage formation.

图1 滑膜关节形成的主要步骤
[1]
Hartmann C,Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton[J]. Cell, 2001, 104(3): 341-351.
[2]
Goldring MB,Tsuchimochi K,Ijiri K. The control of chondrogenesis[J]. J Cell Biochem, 2006, 97(1): 33-44.
[3]
Akiyama H,Chaboissier MC,Martin JF, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6[J]. Genes Dev, 2002, 16(21): 2813-2828.
[4]
Lefebvre V,Smits P. Transcriptional control of chondrocyte fate and differentiation[J]. Birth Defects Res C Embryo Today,2005, 75(200): 200-212.
[5]
Han Y,Lefebvre V. L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer[J]. Mol Cell Biol, 2008, 28(16): 4999-5013.
[6]
Dy P,Smits P,Silvester A, et al. Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage[J]. Dev Biol, 2010, 341(2): 346-359.
[7]
Pacifici M,Koyama E,Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries[J]. Birth Defects Res C Embryo Today, 2005, 75(3):237-248.
[8]
Pitsillides AA,Ashhurst DE. A critical evaluation of specific aspects of joint development[J].Dev Dyn, 2008, 237(9): 2284-2294.
[9]
Archer CW,Dowthwaite GP,Francis-West P. Development of synovial joints[J]. Birth Defects Res C Embryo Today, 2003, 69(2): 144-155.
[10]
Bland YS,Ashhurst DE. Development and ageing of the articular cartilage of the rabbit knee joint: distribution of the fibrillar collagens[J]. Anat Embryol (Berl), 1996, 194(6): 607-619.
[11]
Francis-West PH,Parish J,Lee K, et al. BMP/GDF-signaling interactions during synovial joint development[J]. Cell Tissue Res, 1999, 296(1): 111-119.
[12]
Andersen H. Histochemical studies on the histogenesis of the knee joint and superior tibio-fibular joint in human foetuses[J]. Acta Anat (Basel), 1961, 46: 279-303.
[13]
Mitrovic D. Development of the diarthrodial joints in the rat embryo[J]. Am J Anat, 1978, 151: 475-485.
[14]
Edwards JC,Wilkinson LS,Jones HM, et al. The formation of human synovial joint cavities:a possible role for hyaluronan and CD44 in altered interzone cohesion[J]. J Anat, 1994, 185(Pt 2): 355-367.
[15]
Guo X,Day TF,Jiang X, et al. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation[J]. Genes Dev, 2004, 18(19): 2404-2417.
[16]
Spater D,Hill TP,Gruber M, et al. Role of canonical Wnt-signaling in joint formation[J]. European Cells & Materials, 2006, 12: 71-80.
[17]
Tamamura Y,Otani T,Kanatani N, et al. Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification[J]. J Biol Chem, 2005, 280(19): 19185-19195.
[18]
Day TF,Guo XZ,Garrett-Beal L, et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis[J]. Dev Cell, 2005, 8(5): 739-750.
[19]
Koyama E,Shibukawa Y,Nagayama M, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis[J]. Dev Biol, 2008, 316(1): 62-73.
[20]
Storm EE,Kingsley DM. GDF5 coordinates bone and joint formation during digit development[J]. Dev Biol,1999, 209(1): 11-27.
[21]
Seo HS,Serra R. Deletion of TGFbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints[J]. Dev Biol, 2007, 310(2): 304-316.
[22]
Serra R,Chang C. TGF-beta signaling in human skeletal and patterning disorders[J]. Birth Defects Res C Embryo Today, 2003, 69(4): 333-351.
[23]
Edwards CJ,Francis-West PH. Bone morphogenetic proteins in the development and healing of synovial joints[J]. Semin Arthritis Rheum, 2001, 31(1): 33-42.
[24]
Francis-West PH,Abdelfattah A,Chen P, et al. Mechanisms of GDF-5 action during skeletal development[J]. Development,1999, 126(6): 1305-1315.
[25]
Hogan BL. Bone morphogenetic proteins: multifunctional regulators of vertebrate development[J]. Genes Dev, 1996, 10(13): 1580-1594.
[26]
Storm EE,Kingsley DM. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family[J]. Development, 1996, 122(12): 3969-3979.
[27]
Zou HY,Wieser R,Massague J, et al. Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage[J]. Genes Dev, 1997, 11(17): 2191-2203.
[28]
Merino R,Macias D,Ganan Y, et al. Expression and function of GDF-5 during digit skeletogenesis in the embryonic chick leg bud[J]. Dev Biol, 1999, 206(1): 33-45.
[29]
Koyama E,Ochiai T,Rountree RB, et al. Synovial joint formation during mouse limb skeletogenesis-roles of Indian hedgehog signaling[J]. Ann N Y Acad Sci, 2007, 1116:100-112.
[30]
Rountree RB,Schoor M,Chen H, et al. BMP receptor signaling is required for postnatal maintenance of articular cartilage[J/OL]. PLoS Biol, 2004, 2(11): e355. doi: 10.1371/journal.pbio.0020355
[31]
Brunet LJ,McMahon JA,McMahon AP, et al. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton[J]. Science, 1998, 280(5368): 1455-1457.
[32]
Gong YQ,Krakow D,Marcelino J, et al. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis[J]. Nat Genet, 1999, 21(3): 302-304.
[33]
Seki K,Hata A. Indian hedgehog gene is a target of the bone morphogenetic protein signaling pathway[J]. J Biol Chem, 2004, 279(18): 18544-18549.
[34]
Vortkamp A,Lee K,Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein[J]. Science, 1996, 273(5275): 613-622.
[35]
St-Jacques B,Hammerschmidt M,McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation[J]. Genes Dev, 1999, 13(16): 2072-2086.
[36]
Koyama E,Young B,Nagayama M, et al. Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis[J]. Development, 2007, 134(11): 2159-2169.
[37]
Lizarraga G,Lichtler A,Upholt WB, et al. Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb[J]. Dev Biol, 2002, 243(1): 44-54.
[38]
Mitrovic DR. Development of the metatarsophalangeal joint of the chick embryo: morphological, ultrastructural and histochemical studies[J]. Am J Anat, 1977, 150(2): 333-347.
[39]
Ito MM,Kida MY. Morphological and biochemical re-evaluation of the process of cavitation in the rat knee joint: cellular and cell strata alterations in the interzone[J]. J Anat, 2000, 197(Pt 4): 659-679.
[40]
Kavanagh E,Abiri M,Bland YS, et al. Division and death of cells in developing synovial joints and long bones[J]. Cell Biol Int, 2002, 26(8): 679-688.
[41]
Edwards JC,Wilkinson LS,Soothill P, et al. Matrix metalloproteinases in the formation of human synovial joint cavities[J]. J Anat, 1996, 188(2): 355-360.
[42]
Matsumoto K,Li YC,Jakuba C, et al. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb[J]. Development, 2009, 136(16): 2825-2835.
[43]
Archer CW,Morrison H,Pitsillides AA. Cellular aspects of the development of diarthrodial joints and articular cartilage[J]. J Anat, 1994, 184(Pt 3): 447-456.
[44]
Pitsillides AA. Identifying and characterizing the joint cavity-forming cell[J]. Cell Biochem Funct, 2003, 21(3): 235-240.
[45]
Pitsillides AA,Archer CW,Prehm P, et al. Alterations in hyaluronan synthesis during developing joint cavitation [J]. J Histochem Cytochem, 1995, 43(3): 263-273.
[46]
Mundy C,Yasuda T,Kinumatsu TA, et al. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine[J]. Dev Biol, 2011, 351(1): 70-81.
[47]
Pitsillides AA. Early effects of embryonic movement: `a shot out of the dark’[J]. J Anat, 2006, 208(4): 417-431.
[48]
Kahn J,Shwartz Y,Blitz E, et al. Muscle contraction is necessary to maintain joint progenitor cell fate[J]. Dev Cell, 2009, 16(5): 734-743.
[49]
Davis AP,Witte DP,Hsieh-Li HM, et al. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11[J]. Nature, 1995, 375(6534):791-795.
[50]
Koyama E,Yasuda T,Minugh-Purvis N, et al. Hox11 genes establish synovial joint organization and phylogenetic characteristics in developing mouse zeugopod skeletal elements[J]. Development, 2010, 137(22): 3795-3800.
[51]
Koyama E,Yasuda T,Wellik DM, et al. Hox11 paralogous genes are required for formation of wrist and ankle joints and articular surface organization[J]. Ann N Y Acad Sci, 2010, 1192: 307-316.
[52]
Pazin DE,Gamer LW,Cox KA, et al. Molecular profiling of synovial joints: Use of microarray analysis to identify factors that direct the development of the knee and elbow[J]. Dev Dyn, 2012, 241(11): 1816-1826.
[53]
Goldring MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis[J]. Ther Adv Musculoskelet Dis, 2012, 4(4): 269-285.
[54]
Hunziker EB. Growth plate structure and function[J]. Pathol Immunopathol Res, 1988, 7(1-2): 9-13.
[55]
Hyde G,Dover S,Aszodi A, et al. Lineage tracing using matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms[J]. Dev Biol, 2007, 304(2): 825-833.
[56]
Aszodi A,Bateman JF,Hirsch E, et al. Normal skeletal development of mice lacking matrilin 1: redundant function of matrilins in cartilage?[J]. Mol Cell Biol, 1999, 19(11): 7841-7845.
[57]
Murphy JM,Heinegard R,McIntosh A, et al. Distribution of cartilage molecules in the developing mouse joint[J]. Matrix Biol, 1999, 18(5): 487-497.
[58]
Pacifici M,Koyama E,Shibukawa Y, et al. Cellular and molecular mechanisms of synovial joint and articular cartilage formation[J]. Ann N Y Acad Sci, 2006, 1068:74-86.
[59]
Sharrocks AD,Brown AL,Ling Y, et al. The ETS-domain transcription factor family[J]. Int J Biochem Cell Biol, 1997, 29(12): 1371-1387.
[60]
Pfander D,Swoboda B,Kirsch T. Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes[J]. Am J Pathol, 2001, 159(5): 1777-1783.
[1] 王博冉, 乔春梅, 李春歌, 王欣, 王晓磊. 超声造影评估类风湿关节炎亚临床滑膜炎疾病进展的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 802-808.
[2] 纪小孟, 刘璠, 唐晓波, 卞为伟, 董佩龙, 刘振鲁. 两种手术方式治疗肩袖撕裂合并粘连性肩关节囊炎[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 561-567.
[3] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[4] 陈晓玲, 钟永洌, 刘巧梨, 李娜, 张志奇, 廖威明, 黄桂武. 超高龄髋膝关节术后谵妄及心血管并发症风险预测[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 575-584.
[5] 马桥桥, 张传开, 郭开今, 蒋涛, 王子豪, 刘勇, 郝亮. 可降解止血粉减少初次全膝关节置换术失血量的研究[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 585-589.
[6] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[7] 蒲彦婷, 吴翠先, 兰玉梅. 类风湿关节炎患者骨质疏松症风险预测列线图模型构建[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 596-603.
[8] 刘涛, 樊保佑, 史仲举, 刘德荣, 王沛. 股骨距是一个容易被误解的人体结构[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 626-629.
[9] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[10] 王典, 刘双赫, 曾峥. 肩关节镜术后肌肉功能改变对颈椎形态及矢状面参数影响的自身前后对照队列研究[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 371-378.
[11] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[12] 宋庆成, 郑占乐, 王天瑞, 王宇钏, 张凯旋, 纳静, 蔚佳昊, 杨思繁, 宋九宏, 张英泽. “人老膝不老”:膝关节健康管理的全方位探索与实践[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 321-324.
[13] 郑占乐, 王宇钏, 蔚佳昊, 宋庆成, 张凯旋, 纳静, 王天瑞, 宋九宏, 张英泽, 王娟. 保膝须“开膝”——“开膝”在膝骨关节炎中的临床应用价值[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 325-330.
[14] 王松雷, 张贻良, 孟浩, 宋威, 白林晨, 袁心, 张辉. 股骨前髁预截骨髓外定位技术在全膝关节置换术中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 811-819.
[15] 马豆豆, 丁艳, 古今, 王丽芳, 石连杰. 以发热为首发表现的强直性脊柱炎合并潜伏性结核感染一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 791-794.
阅读次数
全文
0
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 0 0 0 0


摘要
117
最新录用 在线预览 正式出版
0 0 117
  来源 本网站 其他网站
  次数 25 92
  比例 21% 79%