[1] |
Kapadia BH, Berg RA, Daley JA, et al. Periprosthetic joint infection[J]. Lancet, 2015, 387(10016):386-394.
|
[2] |
Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections[J]. N Engl J Med, 2004, 351(16):1645-1654.
|
[3] |
Mclean RJ, Lam JS, Graham LL. Training the biofilm generation--a tribute to J. W. costerton[J]. J Bacteriol, 2012, 194(24):6706-6711.
|
[4] |
严广斌.细菌生物膜[J/CD].中华关节外科杂志(电子版),2012,6(6):988.
|
[5] |
顾昕,吴海山,赵辉,等.人工关节置换术后假体周围感染的生物膜研究进展[J/CD].中华关节外科杂志(电子版),2012,6(6):940-945.
|
[6] |
Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections[J]. Acta Orthop, 2015, 86(2):147-158.
|
[7] |
Parvizi J, Alijanipour P, Barberi EF, et al. Novel developments in the prevention, diagnosis, and treatment of periprosthetic joint infections[J]. J Am Acad Orthop Surg, 2015, 23(Suppl):S32-S43.
|
[8] |
曹力,纪保超.髋膝关节置换术后假体周围感染焦点问题[J/CD].中华关节外科杂志(电子版),2016,10(4):360-363.
|
[9] |
Nana A, Nelson SB, Mclaren A, et al. What's new in musculoskeletal infection: update on biofilms[J]. J Bone Joint Surg Am, 2016, 98(14):1226-1234.
|
[10] |
Tzeng A, Tzeng TH, Vasdev S, et al. Treating periprosthetic joint infections as biofilms: key diagnosis and management strategies[J]. Diagn Microbiol Infect Dis, 2015, 81(3):192-200.
|
[11] |
Mcconoughey SJ, Howlin R, Granger JF, et al. Biofilms in periprosthetic orthopedic infections[J]. Future Microbiol, 2014, 9(8):987-1007.
|
[12] |
Hogan S, Stevens NT, Humphreys H, et al. Current and future approaches to the prevention and treatment of staphylococcal medical device-related infections[J]. Curr Pharm Des, 2015, 21(1):100-113.
|
[13] |
吴岳嵩,王志伟,徐卫东.细菌生物膜与人工关节感染[J/CD].中华关节外科杂志(电子版),2012,6(6):952-961.
|
[14] |
谈佳琪,郭阁永,沈灏.金黄色葡萄球菌假体关节感染生物膜形成和调节的分子机制[J/CD].中华关节外科杂志(电子版),2016,10(4):426-431.
|
[15] |
Lu Y, Yue Z, Wang W, et al. Strategies on designing multifunctional surfaces to prevent biofilm formation[J]. Front Chem Sci Eng, 2015, 9(3):324-335.
|
[16] |
Cheng G, Li G, Xue H, et al. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation[J]. Biomaterials, 2009, 30(28):5234-5240.
|
[17] |
Saldarriaga Fernández IC, Van Der Mei HC, Lochhead MJ, et al. The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings[J]. Biomaterials, 2007, 28(28):4105-4112.
|
[18] |
Pountos I, Georgouli T, Henshaw K, et al. Mesenchymal stem cell physiology can be affected by antibiotics: an in vitro study[J]. Cell Mol Biol (Noisy-le-grand), 2014, 60(4):1-7.
|
[19] |
Jose B, Antoci V, Zeiger AR, et al. Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus[J]. Chem Biol, 2005, 12(9):1041-1048.
|
[20] |
Antoci V, King SB, Jose B, et al. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization[J]. J Orthop Res, 2007, 25(7):858-866.
|
[21] |
Stewart S, Barr S, Engiles J, et al. Vancomycin-modified implant surface inhibits biofilm formation and supports bone-healing in an infected osteotomy model in sheep: a proof-of-concept study[J]. J Bone Joint Surg Am, 2012, 94(15):1406-1415.
|
[22] |
Ketonis C, Barr S, Adams CS, et al. Vancomycin bonded to bone grafts prevents bacterial colonization[J]. Antimicrob Agents Chemother, 2011, 55(2):487-494.
|
[23] |
Chow EK, Zhang XQ, Chen M, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment[J]. Sci Transl Med, 2011, 3(73):73ra21:1-10.
|
[24] |
Mochalin VN, Pentecost A, Li XM, et al. Adsorption of drugs on nanodiamond: toward development of a drug delivery platform[J]. Mol Pharm, 2013, 10(10):3728-3735.
|
[25] |
Popat KC, Eltgroth M, Latempa TJ, et al. Decreased staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes[J]. Biomaterials, 2007, 28(32):4880-4888.
|
[26] |
Lin WT, Tan HL, Duan ZL, et al. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters[J]. Int J Nanomedicine, 2014, 9:1215-1230.
|
[27] |
Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, et al. Antimicrobial peptides: general overview and clinical implications in human health and disease[J]. Clin Immunol, 2010, 135(1):1-11.
|
[28] |
Kazemzadeh-Narbat M, Kindrachuk J, Duan K, et al. Antimicrobial peptides on Calcium phosphate-coated Titanium for the prevention of implant-associated infections[J]. Biomaterials, 2010, 31(36):9519-9526.
|
[29] |
Peng ZX, Tu B, Shen Y, et al. Quaternized chitosan inhibits icaA transcription and biofilm formation by staphylococcus on a titanium surface[J]. Antimicrob Agents Chemother, 2011, 55(2):860-866.
|
[30] |
Tan H, Peng Z, Li Q, et al. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus[J]. Biomaterials, 2012, 33(2):365-377.
|
[31] |
Clement JL, Jarrett PS. Antibacterial silver[J]. Met Based Drugs, 1994, 1(5/6):467-482.
|
[32] |
Matsumura Y, Yoshikata K, Kunisaki S, et al. Mode of bactericidal action of Silver zeolite and its comparison with that of silver nitrate[J]. Appl Environ Microbiol, 2003, 69(7):4278-4281.
|
[33] |
Goodman SB, Yao Z, Keeney M, et al. The future of biologic coatings for orthopaedic implants[J]. Biomaterials, 2013, 34(13):3174-3183.
|
[34] |
Secinti KD, Özalp H, Attar A, et al. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants[J]. J Clin Neurosci, 2011, 18(3):391-395.
|
[35] |
Seil JT, Webster TJ. Reduced staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces[J]. Acta Biomater, 2011, 7(6):2579-2584.
|
[36] |
Kim JS, Adamcakova-Dodd A, O'shaughnessy PT, et al. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model[J/OL]. Part Fibre Toxicol, 2011, 8(1):29. doi: 10.1186/1743-8977-8-29
|
[37] |
Cobrado L, Azevedo MM, Silva-Dias A, et al. Cerium, chitosan and hamamelitannin as novel biofilm inhibitors?[J]. J Antimicrob Chemother, 2012, 67(5):1159-1162.
|
[38] |
Lin NJ, Yang HS, Chang Y, et al. Surface self-assembled PEGylation of fluoro-based PVDF membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance[J]. Langmuir, 2013, 29(32):10183-10193.
|
[39] |
Li M, Neoh KG, Xu LQ, et al. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties[J]. Langmuir, 2012, 28(47):16408-16422.
|
[40] |
Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers[J]. Angew Chem Int Ed Engl, 2014, 53(7):1746-1754.
|
[41] |
Cao Z, Jiang S. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles[J]. Nano Today, 2012, 7(5):404-413.
|
[42] |
Williams DL, Vinciguerra J, Lerdahl JM, et al. Does vitamin E-blended UHMWPE prevent biofilm formation?[J]. Clin Orthop Relat Res, 2015, 473(3):928-935.
|
[43] |
Banche G, Allizond V, Bracco P, et al. Interplay between surface properties of standard,vitamin E blended and oxidised ultrahigh molecular weight polyethylene used in total joint replacement and adhesion of staphylococcus aureus and escherichia coli[J]. Bone Joint J, 2014, 96-B(4):497-501.
|
[44] |
Kyomoto M, Shobuike T, Moro T, et al. Prevention of bacterial adhesion and biofilm formation on a vitamin E-blended, cross-linked polyethylene surface with a poly(2-methacryloyloxyethyl phosphorylcholine) layer[J]. Acta Biomater, 2015, 24(2015):24-34.
|
[45] |
Zou P, Hartleb W, Lienkamp K. It takes walls and knights to defend a castle-synthesis of surface coatings from antimicrobial and antibiofouling polymers[J]. J Mater Chem, 2012, 22(37):19579-19589.
|
[46] |
Cheng G, Xue H, Li G, et al. Integrated antimicrobial and nonfouling hydrogels to inhibit the growth of planktonic bacterial cells and keep the surface clean[J]. Langmuir, 2010, 26(13):10425-10428.
|
[47] |
Follmann HD, Martins AF, Gerola AP, et al. Antiadhesive and antibacterial multilayer films via layer-by-layer assembly of TMC/heparin complexes[J]. Biomacromolecules, 2012, 13(11):3711-3722.
|
[48] |
Wong SY, Han L, Timachova K, et al. Drastically lowered protein adsorption on microbicidal hydrophobic/hydrophilic polyelectrolyte multilayers[J]. Biomacromolecules, 2012, 13(3):719-726.
|
[49] |
Zhuk I, Jariwala F, Attygalle AB, et al. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release[J]. ACS Nano, 2014, 8(8):7733-7745.
|
[50] |
Cheng G, Xue H, Zhang Z, et al. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities[J]. Angew Chem Int Ed Engl, 2008, 47(46):8831-8834.
|
[51] |
Wang BL, Ren KF, Chang H, et al. Construction of degradable multilayer films for enhanced antibacterial properties[J]. ACS Appl Mater Interfaces, 2013, 5(10):4136-4143.
|
[52] |
Cao Z, Mi L, Mendiola J, et al. Reversibly switching the function of a surface between attacking and defending against bacteria[J]. Angew Chem Int Ed Engl, 2012, 51(11):2602-2605.
|
[53] |
Cao B, Li L, Tang Q, et al. The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer[J]. Biomaterials, 2013, 34(31):7592-7600.
|
[54] |
Yu Q, Cho J, Shivapooja P, et al. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria[J]. ACS Appl Mater Interfaces, 2013, 5(19):9295-9304.
|
[55] |
Huang CJ, Chen YS, Chang Y. Counterion-activated nanoactuator: reversibly switchable killing/releasing bacteria on polycation brushes[J]. ACS Appl Mater Interfaces, 2015, 7(4):2415-2423.
|