切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2018, Vol. 12 ›› Issue (04) : 544 -550. doi: 10.3877/cma.j.issn.1674-134X.2018.04.017

所属专题: 文献

综述

抗菌涂层改性预防骨科内植物感染生物膜形成的研究进展
贾古友1, 刘树民1,(), 王晗1, 唐绪军1, 王晓光1, 刘震1, 胡永成2   
  1. 1. 272049 济宁市第二人民医院骨关节科
    2. 300211 天津市天津医院骨肿瘤科
  • 收稿日期:2017-09-15 出版日期:2018-08-01
  • 通信作者: 刘树民
  • 基金资助:
    济宁市科技助推新旧动能转换计划(2017SMNS014)

Novel development of antimicrobial coating modification in prevention of biofilm formation of infections involving orthopaedic surgical implants

Guyou Jia1, Shumin Liu1,(), Han Wang1, Xujun Tang1, Xiaoguang Wang1, Zhen Liu1, Yongcheng Hu2   

  1. 1. Department of bone and joint surgery, Jining Number 2 People’s Hospital, Jining 272049, China
    2. Department of bone tumor, Tianjin Hospital, Tianjin 300211, China
  • Received:2017-09-15 Published:2018-08-01
  • Corresponding author: Shumin Liu
  • About author:
    Corresponding author: Liu Shumin, Email:
引用本文:

贾古友, 刘树民, 王晗, 唐绪军, 王晓光, 刘震, 胡永成. 抗菌涂层改性预防骨科内植物感染生物膜形成的研究进展[J]. 中华关节外科杂志(电子版), 2018, 12(04): 544-550.

Guyou Jia, Shumin Liu, Han Wang, Xujun Tang, Xiaoguang Wang, Zhen Liu, Yongcheng Hu. Novel development of antimicrobial coating modification in prevention of biofilm formation of infections involving orthopaedic surgical implants[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2018, 12(04): 544-550.

骨科内植物感染是各种骨科内植物术后常见的灾难性并发症,增加了社会经济负担,严重影响了患者生活质量。生物膜形成是骨科内植物感染的本质特征,在感染的发生、发展及诊疗中扮演重要角色。生物膜特有的生物学特征导致目前各种治疗内植物感染的方法疗效不佳。目前已经认识到生物膜一旦形成则很难完全控制和清除。与其它感染性疾病类似,控制骨科内植物感染的最佳手段是预防,其中对内植物表面进行抗菌涂层改性以实现细菌与内植物表面接触时直接被杀灭或抑制其与内植物表面的粘附是最直接也最关键的预防靶点。因此,本文对各种主动抗菌涂层改性方法如抗生素等、被动抗菌涂层改性方法如两性离子聚合物等,尤其近年来兴起的主动改性与被动改性相结合的新策略进行简要综述,这对临床防治骨科内植物感染生物膜形成以及延长内植物使用寿命、降低医疗费用、提高患者生活质量具有重要意义。

As the number of joint arthroplasty and internal fixation surgeries continues to rise, the infection involving orthopaedic surgical implants is a devastating complication. The prospect of the increasing burden of these infection and its tremendous impact on patients, health institutions, and society is a significant public health concern. Biofilm formation is the essential characteristic of these infections. The success rate of treatment on biofilm infections such as antibiotic and debridement is lower than what excepted. Due to the recognized difficulty in eradicating biofilms once they have formed, the prevention of infection following prosthetic or device implantation continues to be the focus of intense research in orthopedics specialties. Bacteria-killing and bacteria-resistive are the two key points in prevention of biofilm formation. Surface-tethered bacteria-killing materials and bacteria-resistive materials implant coatings show great potential for the prevention of bioflim formation. Implant coatings that resist biofilm-based infections fall into two catergories: (1) passive coatings, which impede bacterial adhesion, including polyethylene glycol, zwitterionic polymers, vitamin E; (2) active coatings, which release pre-incorporated antimicrobials to kill bacteria upon contact, including antibiotics, antimicrobial peptides, silver and chitosan. Significant interests have been focused on implant surfaces integrating traditional antimicrobial agents with newly synthesized bacteria-resistant or bacteria-release materials in recent years, such as applying active and passive approaches simultaneously, applying active and passive approach sequentially and repeatedly switching between active and passive approaches.

[1]
Kapadia BH, Berg RA, Daley JA, et al. Periprosthetic joint infection[J]. Lancet, 2015, 387(10016):386-394.
[2]
Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections[J]. N Engl J Med, 2004, 351(16):1645-1654.
[3]
Mclean RJ, Lam JS, Graham LL. Training the biofilm generation--a tribute to J. W. costerton[J]. J Bacteriol, 2012, 194(24):6706-6711.
[4]
严广斌.细菌生物膜[J/CD].中华关节外科杂志(电子版),2012,6(6):988.
[5]
顾昕,吴海山,赵辉,等.人工关节置换术后假体周围感染的生物膜研究进展[J/CD].中华关节外科杂志(电子版),2012,6(6):940-945.
[6]
Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections[J]. Acta Orthop, 2015, 86(2):147-158.
[7]
Parvizi J, Alijanipour P, Barberi EF, et al. Novel developments in the prevention, diagnosis, and treatment of periprosthetic joint infections[J]. J Am Acad Orthop Surg, 2015, 23(Suppl):S32-S43.
[8]
曹力,纪保超.髋膝关节置换术后假体周围感染焦点问题[J/CD].中华关节外科杂志(电子版),2016,10(4):360-363.
[9]
Nana A, Nelson SB, Mclaren A, et al. What's new in musculoskeletal infection: update on biofilms[J]. J Bone Joint Surg Am, 2016, 98(14):1226-1234.
[10]
Tzeng A, Tzeng TH, Vasdev S, et al. Treating periprosthetic joint infections as biofilms: key diagnosis and management strategies[J]. Diagn Microbiol Infect Dis, 2015, 81(3):192-200.
[11]
Mcconoughey SJ, Howlin R, Granger JF, et al. Biofilms in periprosthetic orthopedic infections[J]. Future Microbiol, 2014, 9(8):987-1007.
[12]
Hogan S, Stevens NT, Humphreys H, et al. Current and future approaches to the prevention and treatment of staphylococcal medical device-related infections[J]. Curr Pharm Des, 2015, 21(1):100-113.
[13]
吴岳嵩,王志伟,徐卫东.细菌生物膜与人工关节感染[J/CD].中华关节外科杂志(电子版),2012,6(6):952-961.
[14]
谈佳琪,郭阁永,沈灏.金黄色葡萄球菌假体关节感染生物膜形成和调节的分子机制[J/CD].中华关节外科杂志(电子版),2016,10(4):426-431.
[15]
Lu Y, Yue Z, Wang W, et al. Strategies on designing multifunctional surfaces to prevent biofilm formation[J]. Front Chem Sci Eng, 2015, 9(3):324-335.
[16]
Cheng G, Li G, Xue H, et al. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation[J]. Biomaterials, 2009, 30(28):5234-5240.
[17]
Saldarriaga Fernández IC, Van Der Mei HC, Lochhead MJ, et al. The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings[J]. Biomaterials, 2007, 28(28):4105-4112.
[18]
Pountos I, Georgouli T, Henshaw K, et al. Mesenchymal stem cell physiology can be affected by antibiotics: an in vitro study[J]. Cell Mol Biol (Noisy-le-grand), 2014, 60(4):1-7.
[19]
Jose B, Antoci V, Zeiger AR, et al. Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus[J]. Chem Biol, 2005, 12(9):1041-1048.
[20]
Antoci V, King SB, Jose B, et al. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization[J]. J Orthop Res, 2007, 25(7):858-866.
[21]
Stewart S, Barr S, Engiles J, et al. Vancomycin-modified implant surface inhibits biofilm formation and supports bone-healing in an infected osteotomy model in sheep: a proof-of-concept study[J]. J Bone Joint Surg Am, 2012, 94(15):1406-1415.
[22]
Ketonis C, Barr S, Adams CS, et al. Vancomycin bonded to bone grafts prevents bacterial colonization[J]. Antimicrob Agents Chemother, 2011, 55(2):487-494.
[23]
Chow EK, Zhang XQ, Chen M, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment[J]. Sci Transl Med, 2011, 3(73):73ra21:1-10.
[24]
Mochalin VN, Pentecost A, Li XM, et al. Adsorption of drugs on nanodiamond: toward development of a drug delivery platform[J]. Mol Pharm, 2013, 10(10):3728-3735.
[25]
Popat KC, Eltgroth M, Latempa TJ, et al. Decreased staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes[J]. Biomaterials, 2007, 28(32):4880-4888.
[26]
Lin WT, Tan HL, Duan ZL, et al. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters[J]. Int J Nanomedicine, 2014, 9:1215-1230.
[27]
Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, et al. Antimicrobial peptides: general overview and clinical implications in human health and disease[J]. Clin Immunol, 2010, 135(1):1-11.
[28]
Kazemzadeh-Narbat M, Kindrachuk J, Duan K, et al. Antimicrobial peptides on Calcium phosphate-coated Titanium for the prevention of implant-associated infections[J]. Biomaterials, 2010, 31(36):9519-9526.
[29]
Peng ZX, Tu B, Shen Y, et al. Quaternized chitosan inhibits icaA transcription and biofilm formation by staphylococcus on a titanium surface[J]. Antimicrob Agents Chemother, 2011, 55(2):860-866.
[30]
Tan H, Peng Z, Li Q, et al. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus[J]. Biomaterials, 2012, 33(2):365-377.
[31]
Clement JL, Jarrett PS. Antibacterial silver[J]. Met Based Drugs, 1994, 1(5/6):467-482.
[32]
Matsumura Y, Yoshikata K, Kunisaki S, et al. Mode of bactericidal action of Silver zeolite and its comparison with that of silver nitrate[J]. Appl Environ Microbiol, 2003, 69(7):4278-4281.
[33]
Goodman SB, Yao Z, Keeney M, et al. The future of biologic coatings for orthopaedic implants[J]. Biomaterials, 2013, 34(13):3174-3183.
[34]
Secinti KD, Özalp H, Attar A, et al. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants[J]. J Clin Neurosci, 2011, 18(3):391-395.
[35]
Seil JT, Webster TJ. Reduced staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces[J]. Acta Biomater, 2011, 7(6):2579-2584.
[36]
Kim JS, Adamcakova-Dodd A, O'shaughnessy PT, et al. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model[J/OL]. Part Fibre Toxicol, 2011, 8(1):29. doi: 10.1186/1743-8977-8-29
[37]
Cobrado L, Azevedo MM, Silva-Dias A, et al. Cerium, chitosan and hamamelitannin as novel biofilm inhibitors?[J]. J Antimicrob Chemother, 2012, 67(5):1159-1162.
[38]
Lin NJ, Yang HS, Chang Y, et al. Surface self-assembled PEGylation of fluoro-based PVDF membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance[J]. Langmuir, 2013, 29(32):10183-10193.
[39]
Li M, Neoh KG, Xu LQ, et al. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties[J]. Langmuir, 2012, 28(47):16408-16422.
[40]
Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers[J]. Angew Chem Int Ed Engl, 2014, 53(7):1746-1754.
[41]
Cao Z, Jiang S. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles[J]. Nano Today, 2012, 7(5):404-413.
[42]
Williams DL, Vinciguerra J, Lerdahl JM, et al. Does vitamin E-blended UHMWPE prevent biofilm formation?[J]. Clin Orthop Relat Res, 2015, 473(3):928-935.
[43]
Banche G, Allizond V, Bracco P, et al. Interplay between surface properties of standard,vitamin E blended and oxidised ultrahigh molecular weight polyethylene used in total joint replacement and adhesion of staphylococcus aureus and escherichia coli[J]. Bone Joint J, 2014, 96-B(4):497-501.
[44]
Kyomoto M, Shobuike T, Moro T, et al. Prevention of bacterial adhesion and biofilm formation on a vitamin E-blended, cross-linked polyethylene surface with a poly(2-methacryloyloxyethyl phosphorylcholine) layer[J]. Acta Biomater, 2015, 24(2015):24-34.
[45]
Zou P, Hartleb W, Lienkamp K. It takes walls and knights to defend a castle-synthesis of surface coatings from antimicrobial and antibiofouling polymers[J]. J Mater Chem, 2012, 22(37):19579-19589.
[46]
Cheng G, Xue H, Li G, et al. Integrated antimicrobial and nonfouling hydrogels to inhibit the growth of planktonic bacterial cells and keep the surface clean[J]. Langmuir, 2010, 26(13):10425-10428.
[47]
Follmann HD, Martins AF, Gerola AP, et al. Antiadhesive and antibacterial multilayer films via layer-by-layer assembly of TMC/heparin complexes[J]. Biomacromolecules, 2012, 13(11):3711-3722.
[48]
Wong SY, Han L, Timachova K, et al. Drastically lowered protein adsorption on microbicidal hydrophobic/hydrophilic polyelectrolyte multilayers[J]. Biomacromolecules, 2012, 13(3):719-726.
[49]
Zhuk I, Jariwala F, Attygalle AB, et al. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release[J]. ACS Nano, 2014, 8(8):7733-7745.
[50]
Cheng G, Xue H, Zhang Z, et al. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities[J]. Angew Chem Int Ed Engl, 2008, 47(46):8831-8834.
[51]
Wang BL, Ren KF, Chang H, et al. Construction of degradable multilayer films for enhanced antibacterial properties[J]. ACS Appl Mater Interfaces, 2013, 5(10):4136-4143.
[52]
Cao Z, Mi L, Mendiola J, et al. Reversibly switching the function of a surface between attacking and defending against bacteria[J]. Angew Chem Int Ed Engl, 2012, 51(11):2602-2605.
[53]
Cao B, Li L, Tang Q, et al. The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer[J]. Biomaterials, 2013, 34(31):7592-7600.
[54]
Yu Q, Cho J, Shivapooja P, et al. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria[J]. ACS Appl Mater Interfaces, 2013, 5(19):9295-9304.
[55]
Huang CJ, Chen YS, Chang Y. Counterion-activated nanoactuator: reversibly switchable killing/releasing bacteria on polycation brushes[J]. ACS Appl Mater Interfaces, 2015, 7(4):2415-2423.
[1] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[2] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[3] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[4] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[5] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[6] 李静如, 王江玲, 吴向阳. 简易负压引流在腹股沟疝术后浅部感染中的疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 745-749.
[7] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[8] 赵立力, 王魁向, 张小冲, 李志远. 血沉与C-反应蛋白比值在假体周围感染中的诊断价值分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 351-355.
[9] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[10] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[11] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[12] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[13] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[14] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要