[1] |
中华医学会骨科学分会关节外科学组,北京医学会骨科专业委员会关节外科学组. 中国全膝关节置换术围手术期疼痛管理指南( 2022 )[J]. 中华骨与关节外科杂志, 2022, 15( 11 ): 801-821.
|
[2] |
周宗科, 翁习生, 曲铁兵, 等. 中国髋、膝关节置换术加速康复——围术期管理策略专家共识[J]. 中华骨与关节外科杂志,2016, 9( 1 ): 1-9.
|
[3] |
何家文, 李涛, 周谋望. 全膝关节置换术后早期恐动症的研究现状[J]. 中华物理医学与康复杂志, 2022, 44( 11 ): 1052-1056.
|
[4] |
Lei YT, Xie JW, Huang Q, et al. Benefits of early ambulation within 24 h after total knee arthroplasty: a multicenter retrospective cohort study in China[J/OL]. Mil Med Res, 2021, 8( 1 ): 17.DOI:10.1186/s40779-021-00310-x.
|
[5] |
Aprisunadi, Nursalam N, Mustikasari M, et al. Effect of early mobilization on hip and lower extremity postoperative: a literature review [J/OL]. SAGE Open Nurs, 2023, 9: 23779608231167825.DOI:10.1177/23779608231167825.
|
[6] |
Malviya A, Martin K, Harper I, et al. Enhanced recovery program for hip and knee replacement reduces death rate[J]. Acta Orthop,2011, 82( 5 ): 577-581.
|
[7] |
Chandrasekaran S, Ariaretnam SK, Tsung J, et al. Early mobilization after total knee replacement reduces the incidence of deep venous thrombosis [J]. ANZ J Surg, 2009, 79( 7-8 ): 526-529.
|
[8] |
Larsen K, Hansen TB, Søballe K. Hip arthroplasty patients benefit from accelerated perioperative care and rehabilitation: a quasiexperimental study of 98 patients[J]. Acta Orthop, 2008, 79( 5 ):624-630.
|
[9] |
Labraca NS, Castro-Sánchez AM, Matarán-Peñarrocha GA, et al.Benefits of starting rehabilitation within 24 hours of primary total knee arthroplasty: randomized clinical trial [J]. Clin Rehabil, 2011,25( 6 ): 557-566.
|
[10] |
Castle H, Dragovic M, Waterreus A. Mobilization after joint arthroplasty surgery: who benefits from standing within 12 hours?[J]. ANZ J Surg, 2021, 91( 6 ): 1271-1276.
|
[11] |
Husted H, Jørgensen CC, Gromov K, et al. Low manipulation prevalence following fast-track total knee arthroplasty[J]. Acta Orthop, 2015, 86( 1 ): 86-91.
|
[12] |
中华医学会骨科学分会创伤骨科学组, 中华医学会骨科学分会外固定与肢体重建学组. 中国下肢骨折术后负重专家共识( 2023 )[J]. 中华创伤骨科杂志, 2023, 25( 2 ): 93-100.
|
[13] |
S-Melchor JR, SarAldecoa C, RaquelÍndez-Garc A, et al. Early mobilization after total hip or knee arthroplasty: a substudy of the POWER.2 study[J]. Braz J Anesthesiol, 2023, 73( 1 ): 54-71.
|
[14] |
Bulut A, Vatansever NA. Determination of factors affecting early mobilization of patients who have undergone knee and hip arthroplasty[J]. J Perianesth Nurs, 2022, 37( 5 ): 646-653.
|
[15] |
Chua MJ, Hart AJ, Mittal R, et al. Early mobilisation after total hip or knee arthroplasty: amulticentre prospective observational study[J/OL]. PLoS One, 2017, 12( 6 ): e0179820. DOI:10.1371/journal.pone.0179820.
|
[16] |
Kamel HK, Iqbal MA, Mogallapu R, et al. Time to ambulation after hip fracture surgery: relation to hospitalization outcomes[J]. J Gerontol A Biol Sci Med Sci, 2003, 58( 11 ): 1042-1045.
|
[17] |
Ishii Y, Noguchi H, Sato J, et al. Preoperative characteristics and intraoperative factors do not correlate with accomplishments of active straight-leg raising, standing up, and walking after primary total knee arthroplasty[J/OL]. J Orthop Surg Res, 2021, 16( 1 ):487. DOI:10.1186/s13018-021-02636-7.
|
[18] |
周宗科, 翁习生, 向兵, 等. 中国髋、膝关节置换术加速康复——围术期贫血诊治专家共识[J]. 中华骨与关节外科杂志, 2016, 9( 1 ): 10-15.
|
[19] |
Erlenwein J, Przemeck M, Degenhart A, et al. The influence of chronic pain on postoperative pain and function after hip surgery:a prospective observational cohort study[J]. J Pain, 2016, 17( 2 ):236-247.
|
[20] |
Li S, Si H, Zhang S, et al. Does diabetes mellitus impair the clinical results of total knee arthroplasty under enhanced recovery after surgery?[J/OL]. J Orthop Surg Res, 2023, 18( 1 ): 490.DOI:10.1186/s13018-023-03982-4.
|
[21] |
Hirsch KR, Wolfe RR, Ferrando AA. Pre-and post-surgical nutrition for preservation of muscle mass, strength, and functionality following orthopedic surgery[J/OL]. Nutrients, 2021, 13( 5 ): 1675.DOI:10.3390/nu13051675.
|
[22] |
Dreyer HC, StryckerLA, SenesacHA, et al. Essential amino acid supplementation in patients following total knee arthroplasty[J]. J Clin Invest, 2013, 123( 11 ): 4654-4666.
|
[23] |
Dreyer HC, Owen EC, Strycker LA, et al. Essential amino acid supplementation mitigates muscle atrophy after total knee arthroplasty: arandomized, double-blind, placebo-controlled trial[J/OL]. JBJS Open Access, 2018, 3( 2 ): e0006. DOI:10.2106/JBJS.OA.18.00006.
|
[24] |
Ueyama H, Kanemoto N, Minoda Y, et al. 2020 Chitranjan S.Ranawat Award: perioperative essential amino acid supplementation suppresses rectus femoris muscle atrophy and accelerates early functional recovery following total knee arthroplasty [J]. Bone Joint J,2020, 102-B( 6_Supple_A ): 10-18.
|
[25] |
Ueyama H, Kanemoto N, Minoda Y, et al. Perioperative essential amino acid supplementation facilitates quadriceps muscle strength and volume recovery after TKA: a double-blinded randomized controlled trial[J]. J Bone Joint Surg Am, 2023, 105( 5 ): 345-353.
|
[26] |
Calatayud J, Casaña J, Ezzatvar Y, et al. High-intensity preoperative training improves physical and functional recovery in the early post-operative periods after total knee arthroplasty: a randomized controlled trial [J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25( 9 ): 2864-2872.
|
[27] |
Punnoose A, Claydon-Mueller LS, Weiss O, et al. Prehabilitation for patients undergoing orthopedic surgery: a systematic review and meta-analysis[J/OL]. JAMA Netw Open, 2023, 6( 4 ): e238050.DOI:10.1001/jamanetworkopen.2023.8050.
|
[28] |
Franz A, Ji S, Bittersohl B, et al. Impact of a six-week prehabilitation with blood-flow restriction training on pre-and postoperative skeletal muscle mass and strength in patients receiving primary total knee arthroplasty[J/OL]. Front Physiol, 2022, 13: 881484.DOI:10.3389/fphys.2022.881484.
|
[29] |
Gstoettner M, Raschner C, Dirnberger E, et al. Preoperative proprioceptive training in patients with total knee arthroplasty[J].Knee, 2011, 18( 4 ): 265-270.
|
[30] |
Gränicher P, Mulder L, Lenssen T, et al. Prehabilitation improves knee functioning before and within the first year after total knee arthroplasty: a systematic review with meta-analysis[J]. J Orthop Sports Phys Ther, 2022, 52( 11 ): 709-725.
|
[31] |
Su W, Zhou Y, Qiu H, et al. The effects of preoperative rehabilitation on pain and functional outcome after total knee arthroplasty: a metaanalysis of randomized controlled trials[J/OL]. J Orthop Surg Res,2022, 17( 1 ): 175. DOI:10.1186/s13018-022-03066-9.
|
[32] |
Nguyen C, Boutron I, Roren A, et al. Effect of prehabilitation before total knee replacement for knee osteoarthritis on functional outcomes: a randomizedclinical trial[J/OL]. JAMA Netw Open,2022, 5( 3 ): e221462. DOI:10.1001/jamanetworkopen.2022.1462.
|
[33] |
Morrison SR, Magaziner J, McLaughlin MA, et al. The impact of post-operative pain on outcomes following hip fracture[J]. Pain,2003, 103( 3 ): 303-311.
|
[34] |
Tucker A, McCusker D, Gupta N, et al. Orthopaedicenhanced recovery programme for elective hip and knee arthroplasty-could a regional programme be beneficial?[J]. Ulster Med J, 2016, 85( 2 ):86-91.
|
[35] |
Luna IE, Kehlet H, Wede HR, et al. Objectively measured early physical activity after total hip or knee arthroplasty[J]. J Clin Monit Comput, 2019, 33( 3 ): 509-522.
|
[36] |
王波, 董补怀. 全膝关节置换术后镇痛应用外周神经阻滞的进展[J/CD]. 中华关节外科杂志( 电子版 ), 2020,14( 4 ): 486-490.
|
[37] |
Li D, Ma GG. Analgesic efficacy and quadriceps strength of adductor canal block versus femoral nerve block following total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24( 8 ):2614-2619.
|
[38] |
Fujita Y, Mera H, Watanabe T, et al. Significantly earlier ambulation and reduced risk of near-falls with continuous infusion nerve blocks: a retrospective pilot study of adductor canal block compared to femoral nerve block in total knee arthroplasty[J/OL]. BMC Musculoskelet Disord, 2022, 23( 1 ): 768. DOI:10.1186/s12891-022-05735-6.
|
[39] |
Wasserstein D, Farlinger C, Brull R, et al. Advanced age, obesity and continuous femoral nerve blockade are independent risk factors for inpatient falls after primary total knee arthroplasty[J]. J Arthroplasty, 2013, 28( 7 ): 1121-1124.
|
[40] |
Kuang MJ, Xu LY, Ma JX, et al. Adductor canal block versus continuous femoral nerve block in primary total knee arthroplasty: a meta-analysis[J]. Int J Surg, 2016, 31: 17-24.
|
[41] |
Kuang MJ, Ma JX, Fu L, et al. Is adductor canal block better than femoral nerve block in primary total knee arthroplasty? A GRADE analysis of the evidence through a systematic review and metaanalysis[J]. J Arthroplasty, 2017, 32( 10 ): 3238-3248.e3.
|
[42] |
Mudumbai SC, Edward Kim T, Howard SK, et al. Continuous adductor canal blocks are superior to continuous femoral nerve blocks in promoting early ambulation after TKA[J]. Clin Orthop Relat Res, 2014, 472( 5 ): 1377-1383.
|
[43] |
Shah NA, Jain NP. Is continuous adductor canal block better than continuous femoral nerve block after total knee arthroplasty? Effect on ambulation ability, early functional recovery and pain control:a randomized controlled trial[J]. J Arthroplasty, 2014, 29( 11 ):2224-2229.
|
[44] |
Kukreja P, Bevinetto C, Brooks B, et al. Comparison of adductor canal block and femoral nerve block for early ambulation after primary total knee arthroplasty: a randomized controlled trial[J/OL]. Cureus, 2019, 11( 12 ): e6331. DOI:10.7759/cureus.6331.
|
[45] |
Perlas A, Kirkham KR, Billing R, et al. The impact of analgesic modality on early ambulation following total knee arthroplasty[J].Reg Anesth Pain Med, 2013, 38( 4 ): 334-339.
|
[46] |
Fu H, Wang J, Zhang W, et al. Potential superiority of periarticular injection in analgesic effect and early mobilization ability over femoral nerve block following total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25( 1 ): 291-298.
|
[47] |
Zhao Y, Huang Z, Ma W. Comparison of adductor canal block with local infiltration analgesia in primary total knee arthroplasty: a metaanalysis of randomized controlled trials[J]. Int J Surg, 2019, 69:89-97.
|
[48] |
Lubis AM, Maruanaya S, Tantri AR, et al. The use of combination paracetamol and ibuprofen in postoperative pain after total knee arthroplasty, a randomized controlled trial[J]. Pain Physician, 2021,24( 8 ): E1199-E1204.
|
[49] |
Tanavalee A, Thiengwittayaporn S, Itiravivong P. Progressive quadriceps incision during minimally invasive surgery for total knee arthroplasty: the effect on early postoperative ambulation[J]. J Arthroplasty, 2007, 22( 7 ): 1013-1018.
|
[50] |
Wu Y, Zeng Y, Bao X, et al. Comparison of mini-subvastus approach versus medial parapatellar approach in primary total knee arthroplasty[J]. Int J Surg, 2018, 57: 15-21.
|
[51] |
Stubnya BG, Kocsis K,Váncsa S, et al. Subvastus approach supporting fast-track total knee arthroplasty over the medial parapatellar approach: a systematic review and network metaanalysis[J]. J Arthroplasty, 2023, 38( 12 ): 2750-2758.
|
[52] |
Bridgman SA, Walley G, MacKenzie G, et al. Sub-vastus approach is more effective than a medial parapatellar approach in primary total knee arthroplasty: a randomized controlled trial[J]. Knee, 2009, 16( 3 ): 216-222.
|
[53] |
Ishii Y, Noguchi H, Sato J, et al. Clinical relevance of active straight leg raising, standing up, and walking after total knee arthroplasty in a cross-sectional study[J]. Eur J Orthop Surg Traumatol, 2018, 28( 5 ): 947-953.
|
[54] |
Berth A, Urbach D, Neumann W, et al. Strength and voluntary activation of quadriceps femoris muscle in total knee arthroplasty with midvastus and subvastus approaches[J]. J Arthroplasty, 2007,22( 1 ): 83-88.
|
[55] |
Han S, Patel RV, Ismaily SK, et al. Micromotion and migration of cementlesstibialtrays under functional loading conditions[J]. J Arthroplasty, 2021, 36( 1 ): 349-355.
|
[56] |
Wan Q, Zhang A, Liu Y, et al. The influence of body weight index on initial stability of uncemented femoral knee protheses:a finite element study[J/OL]. Heliyon, 2023, 9( 3 ): e13819.DOI:10.1016/j.heliyon.2023.e13819.
|
[57] |
Jackson MP, Sexton SA, Walter WL, et al. The impact of obesity on the mid-term outcome of cementless total knee replacement[J]. J Bone Joint Surg Br, 2009, 91( 8 ): 1044-1048.
|
[58] |
Ledin H, Aspenberg P, Good L. Tourniquet use in total knee replacement does not improve fixation, but appears to reduce final range of motion[J]. Acta Orthop, 2012, 83( 5 ): 499-503.
|
[59] |
Zhang Y, Li D, Liu P, et al. Effects of different methods of using pneumatic tourniquet in patients undergoing total knee arthroplasty: a randomized control trial[J]. Ir J Med Sci, 2017, 186( 4 ): 953-959.
|
[60] |
Wang K, Ni S, Li Z, et al. The effects of tourniquet use in total knee arthroplasty: a randomized, controlled trial[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25( 9 ): 2849-2857.
|
[61] |
Dennis DA, Kittelson AJ, Yang CC, et al. Does tourniquet use in TKA affect recovery of lower extremity strength and function? A randomized trial[J]. Clin Orthop Relat Res, 2016, 474( 1 ): 69-77.
|
[62] |
Beckers G, Mazy D, Manche E, et al. Impact of tourniquet use in total knee arthroplasty on functional recovery and postoperative pain: a prospective study[J]. Arch Orthop Trauma Surg, 2024, 144( 3 ): 1361-1367.
|
[63] |
Stocks GW, Odoemene M, Gex J, et al. Quadriceps strain and TKA: contribution of the tourniquet and intramedullary rod to postoperative thigh pain: a randomized controlled trial[J]. J Bone Joint Surg Am, 2023, 105( 6 ): 455-461.
|
[64] |
Jawhar A, Skeirek D, Stetzelberger V, et al. No effect of tourniquet in primary total knee arthroplasty on muscle strength, functional outcome, patient satisfaction and health status: a randomized clinical trial[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28( 4 ):1045-1054.
|
[65] |
董子漾,薛恒, 陶立元, 等. 止血带对全膝关节置换术患者股四头肌形态及硬度影响的随机对照研究[J]. 中华医学杂志, 2022,102( 24 ): 1833-1838.
|
[66] |
赵钟岳. 伸膝装置的生物力学[J]. 中华骨科杂志, 1996, 16( 1 ):65-68.
|
[67] |
Greene KA, Schurman JR 2nd. Quadriceps muscle function in primary total knee arthroplasty[J]. J Arthroplasty, 2008, 23( 7 Suppl ): 15-19.
|
[68] |
Holm B, Kristensen MT, Bencke J, et al. Loss of knee-extension strength is related to knee swelling after total knee arthroplasty[J].Arch Phys Med Rehabil, 2010, 91( 11 ): 1770-1776.
|
[69] |
Mizner RL, Petterson SC, Snyder-Mackler L. Quadriceps strength and the time course of functional recovery after total knee arthroplasty[J].J Orthop Sports Phys Ther, 2005, 35( 7 ): 424-436.
|
[70] |
Mizner RL, Petterson SC, Stevens JE, et al. Early quadriceps strength loss after total knee arthroplasty[J].J Bone Jt Surg, 87( 5 ):1047-1053.
|
[71] |
Mizner RL, Petterson SC, Stevens JE, et al. Preoperative quadriceps strength predicts functional ability one year after total knee arthroplasty[J]. J Rheumatol, 2005, 32( 8 ): 1533-1539.
|
[72] |
Higgins JT, Frazier SK, Lennie T, et al. Early ambulation after injury is associated with increased muscle size and strength[J]. Biol Res Nurs, 2020, 22( 4 ): 527-535.
|
[73] |
Winkler T, Bell L, Bender A, et al. Periarticular muscle status affects in vivo tibio-femoral joint loads after total knee arthroplasty[J/OL]. Front Bioeng Biotechnol, 2023, 11: 1075357. DOI:10.3389/fbioe.2023.1075357.
|
[74] |
Takamura D, Iwata K, Yajima Y, et al. Cut-off values of preoperative knee extensor strength and hip abductor strength for predicting good walking ability after total knee arthroplasty[J]. Arch Orthop Trauma Surg, 2024, 144(1): 377-384.
|