[1] |
Wei G, Lu K, Umar M,et al. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms[J/OL]. Bone Res, 2023, 11(1): 63. DOI: 10.1038/s41413-023-00301-9.
|
[2] |
刘钊,张晓峰,徐西林,等. 单细胞测序技术在骨再生领域的应用与展望[J]. 中华实验外科杂志,2020,37(11): 2122-2127.
|
[3] |
Tang F,Barbacioru C,Wang Y,et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods,2009,6(5): 377-382.
|
[4] |
Tanay A,Regev A. Scaling single-cell genomics from phenomenology to mechanism[J]. Nature,2017,541(7637): 331-338.
|
[5] |
张宇,孙文爽,李寅翠,等. 单细胞测序技术在骨关节疾病方面的应用[J]. 中国矫形外科杂志,2020,28(3): 235-238.
|
[6] |
Picelli S,Björklund ÅK,Faridani OR,et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods,2013,10(11): 1096-1098.
|
[7] |
Kivioja T,Vähärautio A,Karlsson K,et al. Counting absolute numbers of molecules using unique molecular identifiers[J]. Nat Methods,2011,9(1): 72-74.
|
[8] |
Potter SS. Single-cell RNA sequencing for the study of development,physiology and disease[J]. Nat Rev Nephrol,2018,14(8): 479-492.
|
[9] |
王权,王铸,张振,等. 单细胞测序的技术概述[J]. 中国医药导刊,2020,22(7): 433-439.
|
[10] |
蒋敏,李慧莉,庞盼盼,等. 高通量单细胞转录组测序发展与展望[J]. 生命科学,2020,32(12): 1280-1287.
|
[11] |
Chen S,Fu P,Wu H,et al. Meniscus,articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy,development and function[J]. Cell Tissue Res,2017,370(1): 53-70.
|
[12] |
郑梅梅,江自鲜,郑俭彬,等. 骨关节炎病理变化过程的研究进展[J]. 云南中医药大学学报,2023,46(3): 106-112.
|
[13] |
Giorgino R, Albano D, Fusco S,et al. Knee osteoarthritis: epidemiology,pathogenesis,and mesenchymal stem cells: what else is new?an update[J/OL]. Int J Mol Sci, 2023, 24(7): 6405. DOI: 10.3390/ijms24076405.
|
[14] |
Rezuş E, Burlui A, Cardoneanu A,et al. From pathogenesis to therapy in knee osteoarthritis: bench-to-bedside[J/OL]. Int J Mol Sci, 2021, 22(5): 2697. DOI: 10.3390/ijms22052697.
|
[15] |
朱仔燕,薛松,马金忠. 单细胞测序技术在骨关节炎病因诊断中的研究进展[J/CD]. 中华关节外科杂志(电子版),2022,16(1): 44-48.
|
[16] |
Sebastian A, McCool JL, Hum NR,et al. Single-cell RNA-seq reveals transcriptomic heterogeneity and post-traumatic osteoarthritis-associated early molecular changes in mouse articular chondrocytes[J/OL]. Cells, 2021, 10(6): 1462. DOI: 10.3390/cells10061462.
|
[17] |
Ji Q,Zheng Y,Zhang G,et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis[J]. Ann Rheum Dis,2019,78(1): 100-110.
|
[18] |
Chen Y, Yu Y, Wen Y,et al. A high-resolution route map reveals distinct stages of chondrocyte dedifferentiation for cartilage regeneration[J/OL]. Bone Res, 2022, 10(1): 38. DOI: 10.1038/s41413-022-00209-w.
|
[19] |
Jeon J,Oh H,Lee G,et al. Cytokine-like 1 knock-out mice(Cytl1-/-)show normal cartilage and bone development but exhibit augmented osteoarthritic cartilage destruction[J]. J Biol Chem,2011,286(31): 27206-27213.
|
[20] |
迟少毅,于泽,董乐乐. 新细胞因子CYTL1在骨关节炎中的功能和机制进展[J]. 中国免疫学杂志,2018,34(8): 1278-1281.
|
[21] |
Baboolal TG,Mastbergen SC,Jones E,et al. Synovial fluid hyaluronan mediates MSC attachment to cartilage,a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction[J]. Ann Rheum Dis,2016,75(5): 908-915.
|
[22] |
Sebastian A, Murugesh DK, Mendez ME,et al. Global gene expression analysis identifies age-related differences in knee joint transcriptome during the development of post-traumatic osteoarthritis in mice[J/OL]. Int J Mol Sci, 2020, 21(1): 364. DOI: 10.3390/ijms21010364.
|
[23] |
Wang X, Ning Y, Zhang P,et al. Comparison of the major cell populations among osteoarthritis,Kashin-Beck disease and healthy chondrocytes by single-cell RNA-seq analysis[J/OL]. Cell Death Dis, 2021, 12(6): 551. DOI: 10.1038/s41419-021-03832-3.
|
[24] |
Szychlinska MA, Trovato FM, di Rosa M,et al. Co-expression and co-localization of cartilage glycoproteins CHI3L1 and lubricin in osteoarthritic cartilage: morphological,immunohistochemical and gene expression profiles[J/OL]. Int J Mol Sci, 2016, 17(3): 359. DOI: 10.3390/ijms17030359.
|
[25] |
Li H,Yang HH,Sun ZG,et al. Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients[J]. Bone Joint Res,2019,8(7): 290-303.
|
[26] |
Poulsen RC,Hearn JI,Dalbeth N. The circadian clock: a central mediator of cartilage maintenance and osteoarthritis development?[J]. Rheumatology,2021,60(7): 3048-3057.
|
[27] |
Späth SS,Andrade AC,Chau M,et al. Local regulation of growth plate cartilage[J]. Endocr Dev,2011,21: 12-22.
|
[28] |
Cooper KL,Oh S,Sung Y,et al. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions[J]. Nature,2013,495(7441): 375-378.
|
[29] |
Dy P,Wang W,Bhattaram P,et al. Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes[J]. Dev Cell,2012,22(3): 597-609.
|
[30] |
Vega RB,Matsuda K,Oh J,et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis[J]. Cell,2004,119(4): 555-566.
|
[31] |
Rim YA, Nam Y, Ju JH. The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression[J/OL]. Int J Mol Sci, 2020, 21(7): 2358. DOI: 10.3390/ijms21072358.
|
[32] |
Chou CH, Jain V, Gibson J,et al. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis[J/OL]. Sci Rep, 2020, 10(1): 10868. DOI: 10.1038/s41598-020-67730-y.
|
[33] |
Jiang Y,Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis[J]. Nat Rev Rheumatol,2015,11(4): 206-212.
|
[34] |
Wang F, Guo J, Wang S,et al. B-cell lymphoma-3 controls mesenchymal stem cell commitment and senescence during skeletal aging[J/OL]. Clin Transl Med, 2022, 12(7): e955. DOI: 10.1002/ctm2.955.
|
[35] |
Satija R,Farrell JA,Gennert D,et al. Spatial reconstruction of single-cell gene expression data[J]. Nat Biotechnol,2015,33(5): 495-502.
|
[36] |
Lv Z, Han J, Li J,et al. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis[J/OL]. EBio Medicine, 2022, 84: 104258. DOI: 10.1016/j.ebiom.2022.104258.
|
[37] |
Peters A,Nawrot TS,Baccarelli AA. Hallmarks of environmental insults[J]. Cell,2021,184(6): 1455-1468.
|
[38] |
Wang J, Liu C, Yang L,et al. Probing the communication patterns of different chondrocyte subtypes in osteoarthritis at the single cell level using pattern recognition and manifold learning[J/OL]. Sci Rep, 2023, 13(1): 14467. DOI: 10.1038/s41598-023-41874-z.
|
[39] |
Kurowska-Stolarska M, Alivernini S. Synovial tissue macrophages: friend or foe?[J/OL]. RMD Open, 2017, 3(2): e000527. DOI: 10.1136/rmdopen-2017-000527.
|
[40] |
Brandt KD,Radin EL,Dieppe PA,et al. Yet more evidence that osteoarthritis is not a cartilage disease[J]. Ann Rheum Dis,2006,65(10): 1261-1264.
|
[41] |
Loeser RF,Goldring SR,Scanzello CR,et al. Osteoarthritis: a disease of the joint as an organ[J]. Arthritis Rheum,2012,64(6): 1697-1707.
|
[42] |
Wang Z,Gerstein M,Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet,2009,10(1): 57-63.
|
[43] |
Koyama S,Konishi MA,Ohta Y,et al. Attachment and detachment of living microorganisms using a potential-controlled electrode[J]. Mar Biotechnol,2013,15(4): 461-475.
|
[44] |
Frumkin D, Wasserstrom A, Itzkovitz S,et al. Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues[J/OL]. BMC Biotechnol, 2008, 8: 17. DOI: 10.1186/1472-6750-8-17.
|
[45] |
Shapiro E,Biezuner T,Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science[J]. Nat Rev Genet,2013,14(9): 618-630.
|
[46] |
McCool JL,Hum NR,Sebastian A,et al. Isolation of murine articular chondrocytes for single-cell RNA or bulk RNA sequencing analysis[J]. Methods Mol Biol,2023,2598: 187-196.
|
[47] |
Lohani V,Ar A,Kundu S,et al. Single-cell proteomics with spatial attributes: tools and techniques[J]. ACS Omega,2023,8(20): 17499-17510.
|
[48] |
Kim S, De Jonghe J, Kulesa AB,et al. High-throughput automated microfluidic sample preparation for accurate microbial genomics[J/OL]. Nat Commun, 2017, 8: 13919. DOI: 10.1038/ncomms13919.
|
[49] |
Streets AM,Zhang X,Cao C,et al. Microfluidic single-cell whole-transcriptome sequencing[J]. Proc Natl Acad Sci USA,2014,111(19): 7048-7053.
|
[50] |
See P, Lum J, Chen J,et al. A single-cell sequencing guide for immunologists[J/OL]. Front Immunol, 2018, 9: 2425. DOI: 10.3389/fimmu.2018.02425.
|
[51] |
Fan X, Zhang X, Wu X,et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos[J/OL]. Genome Biol, 2015, 16(1): 148. DOI: 10.1186/s13059-015-0706-1.
|
[52] |
Sasagawa Y, Nikaido I, Hayashi T,et al. Erratum to: quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method,reveals non-genetic gene-expression heterogeneity[J/OL]. Genome Biol, 2017, 18(1): 9. DOI: 10.1186/s13059-017-1154-x.
|
[53] |
Hashimshony T,Wagner F,Sher N,et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep,2012,2(3): 666-673.
|
[54] |
Jaitin DA,Kenigsberg E,Keren-Shaul H,et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science,2014,343(6172): 776-779.
|
[55] |
Islam S,Zeisel A,Joost S,et al. Quantitative single-cell RNA-seq with unique molecular identifiers[J]. Nat Methods,2014,11(2): 163-166.
|
[56] |
Bagnoli JW, Ziegenhain C, Janjic A,et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq[J/OL]. Nat Commun, 2018, 9(1): 2937. DOI: 10.1038/s41467-018-05347-6.
|
[57] |
Bageritz J,Raddi G. Single-cell RNA sequencing with drop-seq[J]. Methods Mol Biol,2019,1979: 73-85.
|
[58] |
Macosko EZ,Basu A,Satija R,et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell,2015,161(5): 1202-1214.
|