[1] |
Parvizi J, Pawasarat IM, Azzam KA, et al. Periprosthetic joint infection: the economic impact of methicillin-resistant infections[J]. J Arthroplasty, 2010, 25(6 Suppl): 103-107.
|
[2] |
Kapadia BH, Berg RA, Daley JA, et al. Periprosthetic joint infection[J]. Lancet, 2016, 387(10016): 386-394.
|
[3] |
Peel TN, Cheng AC, Buising KL, et al. Microbiological aetiology, epidemiology, and clinical profile of prosthetic joint infections: are current antibiotic prophylaxis guidelines effective? [J]. Antimicrob Agents Chemother, 2012, 56(5): 2386-2391.
|
[4] |
Fernandes A, Dias M. The microbiological profiles of infected prosthetic implants with an emphasis on the organisms which form biofilms[J]. J Clin Diagn Res, 2013, 7(2): 219-223.
|
[5] |
Janz V, Wassilew GI, Kribus M, et al. Improved identification of polymicrobial infection in total knee arthroplasty through sonicate fluid cultures[J]. Arch Orthop Trauma Surg, 2015, 135(10): 1453-1457.
|
[6] |
袁俊,冯建民.人工关节置换术后假体周围感染的病原学诊断研究进展[J/CD].中华关节外科杂志(电子版),2016,10(4):432-435.
|
[7] |
Lora-Tamayo J, Murillo O, Iribarren JA, et al. A large multicenter study of methicillin-susceptible and methicillin-resistant staphylococcus aureus prosthetic joint infections managed with implant retention[J]. Clin Infect Dis, 2013, 56(2): 182-194.
|
[8] |
Tornero E, Senneville E, Euba G, et al. Characteristics of prosthetic joint infections due to Enterococcus sp and predictors of failure: a multi-national study[J]. Clin Microbiol Infect, 2014, 20(11): 1219-1224.
|
[9] |
Rendueles O, Travier L, Latour-Lambert PA, et al. Screening of escherichia coli species biodiversity reveals new Biofilm-Associated antiadhesion polysaccharides[J]. MBio, 2011, 2(3): e00011-e00043.
|
[10] |
Yu SC, Zhu XS, Zhou J, et al. Biofilm inhibition and pathogenicity attenuation in bacteria by Proteus mirabilis[J/OL]. R Soc Open Sci, 2018, 5(4): 170702 doi: 10.1098/rsos.170702.
|
[11] |
Barros J, Grenho L, Fontenente S, et al. Staphylococcus aureus and Escherichia coli dual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles[J]. J Biomed Mater Res A, 2017, 105(2): 491-497.
|
[12] |
Liu WZ, Roder HL, Madsen JS, et al. Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization [J]. Front Microbiol, 2016, 7: 1366. doi: 10.3389/fmicb.2016.01366.
|
[13] |
Arndt WF, Ritts RE. Synergism between staphylococci and proteus in mixed infection [J]. Proc Soc Exp Biol Med, 1961, 108: 166-169.
|
[14] |
Arndt WF, Young EJ, Ritts RE. Staphylococcal enhancement of susceptibility to bacterial infection in the mouse[J]. J Infect Dis, 1963, 112(3): 255-263.
|
[15] |
Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci[J]. Clin Microbiol Rev, 2014, 27(4): 870-926.
|
[16] |
Frank DN, Feazel LM, Bessesen MT, et al. The human nasal microbiota and staphylococcus aureus carriage[J/OL]. PLoS One, 2010, 5(5): e10598. doi: 10.1371/journal.pone.0010598.
|
[17] |
Iwase T, Uehara Y, Shinji H, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization[J]. Nature, 2010, 465(7296): 346-349.
|
[18] |
Sugimoto S, Iwamoto T, Takada K, et al. Staphylococcus epidermidis Esp degrades specific proteins associated with staphylococcus aureus biofilm formation and host-pathogen interaction[J]. J Bacteriol, 2013, 195(8): 1645-1655.
|
[19] |
Swift S, Throup JP, Williams P, et al. Quorum sensing:a population-density component in the determination of bacterial phenotype[J]. Trends Biochem Sci, 1996, 21(6): 214-219.
|
[20] |
Le KY, Otto M. Quorum-sensing regulation in staphylococci-an overview [J]. Front Microbiol, 2015, 6: 1174. doi: 10.3389/fmicb.2015.01174.
|
[21] |
Otto M, Süssmuth R, Vuong C, et al. Inhibition of virulence factor expression in staphylococcus aureus by the staphylococcus epidermidis agr pheromone and derivatives[J]. FEBS Lett, 1999, 450(3): 257-262.
|
[22] |
Otto M, Echner H, Voelter W, et al. Pheromone cross-inhibition between staphylococcus aureus and staphylococcus epidermidis[J]. Infect Immun, 2001, 69(3): 1957-1960.
|
[23] |
Paharik AE, Parlet CP, Chung N, et al. Coagulase-negative staphylococcal strain prevents staphylococcus aureus colonization and skin infection by blocking quorum sensing[J]. Cell Host Microbe, 2017, 22(6): 746-756.
|
[24] |
Ji GY, Pei WH, Zhang LS, et al. Staphylococcus intermedius produces a functional agr autoinducing peptide containing a cyclic lactone[J]. J Bacteriol, 2005, 187(9): 3139-3150.
|
[25] |
Zipperer A, Konnerth MC, Laux C, et al. Human commensals producing a novel antibiotic impair pathogen colonization[J]. Nature, 2016, 535(7613): 511-516.
|
[26] |
Harrison F. Microbial ecology of the cystic fibrosis lung[J]. Microbiology, 2007, 153(4): 917-923.
|
[27] |
Gjødsbøl K, Christensen JJ, Karlsmark T, et al. Multiple bacterial species reside in chronic wounds:a longitudinal study[J]. Int Wound J, 2006, 3(3): 225-231.
|
[28] |
James GA, Swogger E, Wolcott R, et al. Biofilms in chronic wounds[J]. Wound Repair Regen, 2008, 16(1): 37-44.
|
[29] |
Hotterbeekx A, Kumar-Singh S, Goossens HA. In vivo and in vitro interactions between pseudomonas aeruginosa and staphylococcus spp [J/OL]. Front Cell Infect Microbiol, 2017, 7: 106. doi: 10.3389/fcimb.2017.00106.
|
[30] |
Lightbown JW, Jackson FL. Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides[J]. Biochem J, 1956, 63(1): 130-137.
|
[31] |
Machan ZA, Taylor GW, Pitt TL, et al. 2-heptyl-4-hydroxyquinoline N-oxide,an antistaphylococcal agent produced by pseudomonas aeruginosa[J]. J Antimicrob Chemother, 1992, 30(5): 615-623.
|
[32] |
Hoffman LR, Déziel E, D’argenio DA, et al. Selection for staphylococcus aureus small-colony variants due to growth in the presence of pseudomonas aeruginosa[J]. Proc Natl Acad Sci USA, 2006, 103(52): 19890-19895.
|
[33] |
Biswas L, Biswas R, Schlag M, et al. Small-colony variant selection as a survival strategy for staphylococcus aureus in the presence of pseudomonas aeruginosa[J]. Appl Environ Microbiol, 2009, 75(21): 6910-6912.
|
[34] |
Neut D, Van Der Mei HC, Bulstra SK. The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics [J]. Acta Orthop, 2007, 78(3): 299-308.
|
[35] |
Bergoge-Bérézin E. Resistance and new antibiotic strategies. The problem with staphylococcus[J]. Presse Med, 2000,29(37):2018-2021.
|
[36] |
Park JH, Lee JH, Cho MH, et al. Acceleration of protease effect on staphylococcus aureus biofilm dispersal[J]. FEMS Microbiol Lett, 2012, 335(1): 31-38.
|
[37] |
De Araujo LV, Guimarães CR, Da Silva Marquita RL, et al. Rhamnolipid and surfactin: anti-adhesion/antibiofilm and antimicrobial effects[J]. Food Control, 2016, 63: 171-178.
|
[38] |
Davies DG, Marques CN. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms[J]. J Bacteriol, 2009, 191(5): 1393-1403.
|
[39] |
Mitchell G, Séguin DL, Asselin A, et al. Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide [J/OL]. BMC Microbiol, 2010, 10(1): 33. doi: 10.1186/1471-2180-10-33
|
[40] |
Fugère A, Seguin DL, Mitchell GA, et al. Interspecific small molecule interactions between clinical isolates of pseudomonas aeruginosa and staphylococcus aureus from adult cystic fibrosis patients [J/OL]. PLoS One, 2014, 9(1): e86705. doi: 10.1371/journal.pone.0086705.
|
[41] |
Alves PM, Al-Badi E, Withycombe C, et al. Interaction between staphylococcus aureus and pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm [J/OL]. Pathog Dis, 2018, 76(1): fty003. doi: 10.1093/femspd/fty003.
|
[42] |
Gomes M, Nitschke M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria[J]. Food Control, 2012, 25(2): 441-447.
|
[43] |
Beenken KE, Blevins JS, Smeltzer MS. Mutation of sarA in staphylococcus aureus limits biofilm formation[J]. Infect Immun, 2003, 71(7): 4206-4211.
|
[44] |
Entenza JM, Moreillon P, Senn MM, et al. Role of sigmaB in the expression of staphylococcus aureus cell wall adhesins ClfA and FnbA and contribution to infectivity in a rat model of experimental endocarditis[J]. Infect Immun, 2005, 73(2): 990-998.
|
[45] |
Bischoff M, Dunman P, Kormanec J, et al. Microarray-based analysis of the staphylococcus aureus sigmaB regulon[J]. J Bacteriol, 2004, 186(13): 4085-4099.
|
[46] |
Mashburn LM, Jett AM, Akins DR, et al. Staphylococcus aureus serves as an iron source for pseudomonas aeruginosa during in vivo coculture[J]. J Bacteriol, 2005, 187(2): 554-566.
|
[47] |
Pastar I, Nusbaum AG, Gil J, et al. Interactions of methicillin resistant staphylococcus aureus USA300 and pseudomonas aeruginosa in polymicrobial wound infection [J/OL]. PLoS One, 2013, 8(2): e56846. doi: 10.1371/journal.pone.0056846
|
[48] |
Lindsay AK, Hogan DA. Candida albicans: molecular interactions with pseudomonas aeruginosa and staphylococcus aureus [J]. Fungal Biol Rev, 2014, 28(4): 85-96.
|
[49] |
Klotz SA, Chasin BS, Powell B, et al. Polymicrobial bloodstream infections involving Candida species:analysis of patients and review of the literature[J]. Diagn Microbiol Infect Dis, 2007, 59(4): 401-406.
|
[50] |
Fehrmann C, Jurk K, Bertling A, et al. Role for the fibrinogen-binding proteins coagulase and Efb in the staphylococcus aureus-candida interaction[J]. Int J Med Microbiol, 2013, 303(5): 230-238.
|
[51] |
Lee LY, Höök M, Haviland D, et al. Inhibition of complement activation by a secreted staphylococcus aureus protein[J]. J Infect Dis, 2004, 190(3): 571-579.
|
[52] |
Kaminishi H, Miyaguchi H, Tamaki T, et al. Degradation of humoral host defense by candida albicans proteinase [J]. Infect Immun, 1995, 63(3): 984-988.
|
[53] |
Zago CE, Silva S, Sanitá PV, et al. Dynamics of biofilm formation and the interaction between candida albicans and methicillin-susceptible (MSSA) and -resistant staphylococcus aureus (MRSA) [J/OL]. PLoS One, 2015, 10(4): e0123206. doi: 10.1371/journal.pone.0123206
|
[54] |
Harriott MM, Noverr MC. Candida albicans and staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance[J]. Antimicrob Agents Chemother, 2009, 53(9): 3914-3922.
|
[55] |
Harriott MM, Noverr MC. Ability of candida albicans mutants to induce staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation[J]. Antimicrob Agents Chemother, 2010, 54(9): 3746-3755.
|
[56] |
Adam B, Baillie GS, Douglas LJ. Mixed species biofilms of candida albicans and staphylococcus epidermidis[J]. J Med Microbiol, 2002, 51(4): 344-349.
|
[57] |
Peters BM, Ovchinnikova ES, Krom BP, et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p[J]. Microbiology, 2012, 158(12): 2975-2986.
|
[58] |
Schlecht LM, Peters BM, Krom BP, et al. Systemic staphylococcus aureus infection mediated by candida albicans hyphal invasion of mucosal tissue[J]. Microbiology, 2015, 161(1): 168-181.
|
[59] |
Allison DL. Vancomycin tolerance and host responses in staphylococcus aureus-candida albicans dual-species biofilm infections. Maryland, USA: University of Maryland, 2017.
|
[60] |
Inoue Y, Togashi N, Hamashima H. Farnesol-induced disruption of the staphylococcus aureus cytoplasmic membrane[J]. Biol Pharm Bull, 2016, 39(5): 653-656.
|
[61] |
Unnanuntana A, Bonsignore L, Shirtliff ME, et al. The effects of farnesol on staphylococcus aureus biofilms and osteoblasts. An in vitro study[J]. J Bone Joint Surg Am, 2009, 91(11): 2683-2692.
|
[62] |
Regev-Yochay G, Dagan R, Raz M, et al. Association between carriage of streptococcus pneumoniae and staphylococcus aureus in children[J]. JAMA, 2004, 292(6): 716-720.
|
[63] |
Bogaert D, Van Belkum A, Sluijter M, et al. Colonisation by streptococcus pneumoniae and staphylococcus aureus in healthy children[J]. Lancet, 2004, 363(9424): 1871-1872.
|
[64] |
Reiss-Mandel A, Regev-Yochay G. Staphylococcus aureus and streptococcus pneumoniae interaction and response to pneumococcal vaccination: myth or reality?[J]. Hum Vaccin Immunother, 2016, 12(2): 351-357.
|
[65] |
Regev-Yochay G, Trzciński K, Thompson CM, et al. Interference between streptococcus pneumoniae and staphylococcus aureus: in vitro hydrogen peroxide-mediated killing by streptococcus pneumoniae[J]. J Bacteriol, 2006, 188(13): 4996-5001.
|
[66] |
Mcnally LM, Jeena PM, Gajee K, et al. Lack of association between the nasopharyngeal carriage of streptococcus pneumoniae and staphylococcus aureus in HIV-1-infected South African children[J]. J Infect Dis, 2006, 194(3): 385-390.
|
[67] |
Lijek RS, Luque SL, Liu Q, et al. Protection from the acquisition of staphylococcus aureus nasal carriage by cross-reactive antibody to a pneumococcal dehydrogenase[J]. Proc Natl Acad Sci USA, 2012, 109(34): 13823-13828.
|
[68] |
Leclercq R, Derlot E, Duval J, et al. Plasmid-mediated resistance to vancomycin and teicoplanin in enterococcus faecium[J]. N Engl J Med, 1988, 319(3): 157-161.
|
[69] |
Weigel LM, Tenover FC. Genetic analysis of a high-level vancomycin-resistant isolate of staphylococcus aureus[J]. Science, 2003, 302(5650): 1569-1571.
|
[70] |
Muscholl-Silberhorn A, Samberger E, Wirth R. Why does staphylococcus aureus secrete an enterococcus faecalis-specific pheromone?[J]. FEMS Microbiol Lett, 1997,157(2): 261-266.
|
[71] |
Périchon B, Courvalin P. VanA-type vancomycin-resistant staphylococcus aureus[J]. Antimicrob Agents Chemother, 2009, 53(11): 4580-4587.
|
[72] |
Tan TL, Kheir MM, Tan DD, et al. Polymicrobial periprosthetic joint infections: outcome of treatment and identification of risk factors [J]. J Bone Joint Surg Am, 2016, 98(24): 2082-2088.
|
[73] |
Boyle KK, Kuo FC, Horcajada JP, et al. General assembly, treatment, antimicrobials: proceedings of international consensus on orthopedic infections [J]. J Arthroplasty, 2019, 34(2, S): S225-S237.
|
[74] |
Wimmer MD, Friedrich MJ, Randau TM, et al. Polymicrobial infections reduce the cure rate in prosthetic joint infections: outcome analysis with two-stage exchange and follow-up≥two years [J]. Int Orthop, 2016, 40(7): 1367-1373.
|
[75] |
Marculescu CE, Cantey JR. Polymicrobial prosthetic joint infections: risk factors and outcome[J]. Clin Orthop Relat Res, 2008, 466(6): 1397-1404.
|
[76] |
Nair N, Biswas R, Göetz F, et al. Impact of staphylococcus aureus on pathogenesis in polymicrobial infections[J]. Infect Immun, 2014, 82(6): 2162-2169.
|