[1] |
赵德伟. 加强对股骨头缺血性坏死病理生理的认识[J/CD].中华关节外科杂志(电子版), 2014, 8(05): 560-562.
|
[2] |
Zhang QY, Li ZR, Gao FQ, et al. Pericollapse stage of osteonecrosis of the femoral head: a last chance for joint preservation[J]. Chin Med J, 2018, 131(21): 2589-2598.
|
[3] |
Ma M, Tan Z, Li W, et al. Osteoimmunology and osteonecrosis of the femoral head[J]. Bone Joint Res, 2022, 11(1): 26-28.
|
[4] |
Weivoda MM, Bradley EW. Macrophages and bone remodeling[J]. J Bone Miner Res, 2023, 38(3): 359-369.
|
[5] |
Mehla K, Singh PK. Metabolic regulation of macrophage polarization in cancer[J]. Trends Cancer, 2019, 5(12): 822-834.
|
[6] |
Yue C, Cui G, Cheng Y, et al. Aucubin suppresses TLR4/NF-κBsignalling to shift macrophages toward M2 phenotype in glucocorticoid-associated osteonecrosis of the femoral head[J/OL]. J Cell Mol Med, 2024, 28 (15): e18583. DOI: 10.1111/jcmm.18583.
|
[7] |
Spiller KL, Anfang RR, Spiller KJ, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds[J]. Biomaterials, 2014, 35(15): 4477-4488.
|
[8] |
Cheng Y, Chen H, Duan P, et al. Early depletion of M1 macrophages retards the progression of glucocorticoid-associated osteonecrosis of the femoral head[J/OL]. Int Immunopharmacol, 2023, 122: 110639. DOI: 10.1016/j.intimp.2023.110639.
|
[9] |
Adapala NS, Kim HKW. Comprehensive genome-wide transcriptomic analysis of immature articular cartilage following ischemic osteonecrosis of the femoral head in piglets[J/OL]. PLoS One, 2016, 11(4): e0153174. DOI: 10.1371/journal.pone.0153174.
|
[10] |
Tan Z, Wang Y, Chen Y, et al. The dynamic feature of macrophage M1/M2 imbalance facilitates the progression of non-traumatic osteonecrosis of the femoral head [J/OL]. Front Bioeng Biotechnol, 2022, 10: 912133. DOI: 10.3389/fbioe.2022.912133.
|
[11] |
Li W, Sakai T, Nishii T, et al. Distribution of TRAP-positive cells and expression of HIF-1alpha, VEGF, and FGF-2 in the reparative reaction in patients with osteonecrosis of the femoral head[J]. J Orthop Res, 2009, 27(5): 694-700.
|
[12] |
Wang C, Wang X, Xu XL, et al. Bone microstructure and regional distribution of osteoblast and osteoclast activity in the osteonecrotic femoral head[J/OL]. PLoS One, 2014, 9(5): e96361. DOI: 10.1371/journal.pone.0096361.
|
[13] |
Ikeuchi K, Hasegawa Y, Seki T, et al. Epidemiology of nontraumatic osteonecrosis of the femoral head in Japan[J]. Mod Rheumatol, 2015, 25(2): 278-281.
|
[14] |
Ren G, Han J, Mo J, et al. Differential gene expression and immune cell infiltration in patients with steroid-induced necrosis of the femoral head[J]. Endocr Metab Immune Disord Drug Targets, 2024, 24(12): 1377-1394.
|
[15] |
Adapala NS, Yamaguchi R, Phipps M, et al. Necrotic bone stimulates proinflammatory responses in macrophages through the activation of toll-like receptor 4 [J]. Am J Pathol, 2016, 186(11): 2987-2999.
|
[16] |
Pei J, Fan L, Nan K, et al. Excessive activation of TLR4/NF-κB interactively suppresses the canonical Wnt/β-catenin pathway and induces SANFH in SD rats [J/OL]. Sci Rep, 2017, 7(1): 11928. DOI: 10.1038/s41598-017-12196-8.
|
[17] |
Tian L, Wen Q, Dang X, et al. Immune response associated with Toll-like receptor 4 signaling pathway leads to steroid-induced femoral head osteonecrosis [J/OL]. BMC Musculoskelet Disord, 2014, 15: 18. DOI: 10.1186/1471-2474-15-18.
|
[18] |
Willenborg S, Lucas T, van Loo G, et al. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair [J]. Blood, 2012, 120(3): 613-625.
|
[19] |
Shinohara I, Tsubosaka M, Toya M, et al. C-C motif chemokine ligand 2 enhances macrophage chemotaxis, osteogenesis, and angiogenesis during the inflammatory phase of bone regeneration[J/OL]. Biomolecules, 2023, 13(11): 1665. DOI: 10.3390/biom13111665.
|
[20] |
Shi C, Jia T, Mendez-Ferrer S, et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands [J]. Immunity, 2011, 34(4): 590-601.
|
[21] |
Sucur A, Jajic Z, Artukovic M, et al. Chemokine signals are crucial for enhanced homing and differentiation of circulating osteoclast progenitor cells [J/OL]. Arthritis Res Ther, 2017, 19(1): 142. DOI: 10.1186/s13075-017-1337-6.
|
[22] |
Peng Y, Wu S, Li Y, et al. Type H blood vessels in bone modeling and remodeling [J]. Theranostics, 2020, 10(1): 426-436.
|
[23] |
Ma T, Wang Y, Ma J, et al. Research progress in the pathogenesis of hormone-induced femoral head necrosis based on microvessels: a systematic review [J/OL]. J Orthop Surg Res, 2024, 19(1): 265. DOI: 10.1186/s13018-024-04748-2.
|
[24] |
Lobov I, Mikhailova N. The role of Dll4/Notch signaling in normal and pathological ocular angiogenesis: Dll4 controls blood vessel sprouting and vessel remodeling in normal and pathological conditions [J/OL]. J Ophthalmol, 2018, 2018: 3565292. DOI: 10.1155/2018/3565292.
|
[25] |
Tiemeijer LA, Frimat JP, Stassen OA, et al. Spatial patterning of the Notch ligand Dll4 controls endothelial sprouting in vitro[J/OL]. Sci Rep, 2018, 8(1): 6392. DOI: 10.1038/s41598-018-24646-y.
|
[26] |
Hu Y, Li H. DLL4/Notch blockade disrupts mandibular advancement-induced condylar osteogenesis by inhibiting H-type angiogenesis [J]. J Oral Rehabil, 2024, 51(4): 754-761.
|
[27] |
Li L, Jin JH, Liu HY, et al. Notch1 signaling contributes to TLR4-triggered NF-κB activation in macrophages [J/OL]. Pathol Res Pract, 2022, 234: 153894. DOI: 10.1016/j.prp.2022.153894.
|
[28] |
Pagie S, Gérard N, Charreau B. Notch signaling triggered via the ligand DLL4 impedes M2 macrophage differentiation and promotes their apoptosis [J/OL]. Cell Commun Signal, 2018, 16(1): 4. DOI: 10.1186/s12964-017-0214-x.
|
[29] |
Wu D, Xu J, Jiao W, et al. Suppression of macrophage activation by sodium danshensuvia HIF-1α/STAT3/NLRP3 pathway ameliorated collagen-induced arthritis in mice [J/OL]. Molecules, 2023, 28(4): 1551. DOI: 10.3390/molecules28041551.
|
[30] |
Christofides A, Strauss L, Yeo A, et al. The complex role of tumor-infiltrating macrophages [J]. Nat Immunol, 2022, 23(8): 1148-1156.
|
[31] |
Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages[J/OL]. Front Immunol, 2022, 13: 936167. DOI: 10.3389/fimmu.2022.936167.
|
[32] |
Palsson-McDermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages[J/OL]. Cell Metab, 2015, 21(2): 347. DOI: 10.1016/j.cmet.2015.01.017.
|
[33] |
Jha AK, Huang SC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization[J]. Immunity, 2015, 42(3): 419-430.
|
[34] |
Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α[J]. Nature, 2013, 496(7444): 238-242.
|
[35] |
Shirai T, Nazarewicz RR, Wallis BB, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease[J]. J Exp Med, 2016, 213(3): 337-354.
|
[36] |
Liang J, Cao R, Zhang Y, et al. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis[J/OL]. Nat Commun, 2016, 7: 12431. DOI: 10.1038/ncomms12431.
|
[37] |
Das Gupta K, Shakespear MR, Curson JEB, et al. Class IIa histone deacetylases drive toll-like receptor-inducible glycolysis and macrophage inflammatory responses via pyruvate kinase M2[J]. Cell Rep, 2020, 30(8): 2712-2728.e8.
|
[38] |
Xu J, Jiang C, Wang X, et al. Upregulated PKM2 in macrophages exacerbates experimental arthritis via STAT1 signaling[J]. J Immunol, 2020, 205(1): 181-192.
|
[39] |
Zhang Y, Zhu L, Li X, et al. M2 macrophage exosome-derived lncRNA AK083884 protects mice from CVB3-induced viral myocarditis through regulating PKM2/HIF-1α axis mediated metabolic reprogramming of macrophages[J/OL]. Redox Biol, 2024, 69: 103016. DOI: 10.1016/j.redox.2023.103016.
|
[40] |
Verdegem D, Moens S, Stapor P, et al. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism[J/OL]. Cancer Metab, 2014, 2: 19. DOI: 10.1186/2049-3002-2-19.
|
[41] |
Wu H, He L, Shi J, et al. Resveratrol inhibits VEGF-induced angiogenesis in human endothelial cells associated with suppression of aerobic glycolysis via modulation of PKM2 nuclear translocation[J]. Clin Exp Pharmacol Physiol, 2018, 45(12): 1265-1273.
|
[42] |
Li F, Liu X, Li M, et al. Inhibition of PKM2 suppresses osteoclastogenesis and alleviates bone loss in mouse periodontitis[J/OL]. IntImmunopharmacol, 2024, 129: 111658. DOI: 10.1016/j.intimp.2024.111658.
|
[43] |
Guo J, Ren R, Yao X, et al. PKM2 suppresses osteogenesis and facilitates adipogenesis by regulating β-catenin signaling and mitochondrial fusion and fission[J]. Aging, 2020, 12(4): 3976-3992.
|
[44] |
ZengW, XingZ, Tan M, et al. Propofolregulatesactivatedmacrophagesmetabolismthroughinhibition of ROS-mediatedGLUT1 expression[J]. Inflamm Res, 2021, 70(4): 473-481.
|
[46] |
Freemerman AJ, Johnson AR, Sacks GN, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatoryphenotype[J]. J Biol Chem, 2014, 289(11): 7884-7896.
|
[47] |
Wang X, Tang M, Zhang Y, et al. Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils[J/OL]. J Vet Sci, 2022, 23(5): e76. DOI: 10.4142/jvs.22112.
|
[48] |
Wang Q, Nie L, Zhao P, et al. Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging[J/OL]. Int J Oral Sci, 2021, 13(1): 11. DOI: 10.1038/s41368-021-00116-6.
|
[49] |
Torrente L, DeNicola GM. GAPDH redox redux-rewiring pentose phosphate flux[J]. Nat Metab, 2023, 5(4): 538-539.
|
[50] |
Weng W, Zhang Y, Gui L, et al. PKM2 promotes proinflammatory macrophage activation in ankylosing spondylitis[J]. J Leukoc Biol, 2023, 114(6): 595-603.
|
[51] |
Shao C, Lin S, Liu S, et al. HIF1α-induced glycolysis in macrophage is essential for the protective effect of ouabain during endotoxemia[J/OL]. Oxid Med Cell Longev, 2019, 2019: 7136585. DOI: 10.1155/2019/7136585.
|
[52] |
Hu Y, Lou X, Wang R, et al. Aspirin, a potential GLUT1 inhibitor in a vascular endothelial cell line[J]. Open Med, 2019, 14: 552-560.
|
[53] |
Mamun AA, Hayashi H, Yamamura A, et al. Hypoxia induces the translocation of glucose transporter 1 to the plasma membrane in vascular endothelial cells[J/OL]. J Physiol Sci, 2020, 70(1): 44. DOI: 10.1186/s12576-020-00773-y.
|
[54] |
Luo H, Wei J, Wu S, et al. Elucidating the role of the GC/GR/GLUT1 axis in steroid-induced osteonecrosis of the femoral head: a proteomic approach[J/OL]. Bone, 2024, 183: 117074. DOI: 10.1016/j.bone.2024.117074.
|
[55] |
Zhou HC, Yu WW, Yan XY, et al. Lactate-driven macrophage polarization in the inflammatory microenvironment alleviates intestinal inflammation[J/OL]. Front Immunol, 2022, 13: 1013686. DOI: 10.3389/fimmu.2022.1013686.
|
[56] |
Wang J, Yang P, Yu T, et al. Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages[J]. Int J BiolSci, 2022, 18(16): 6210-6225.
|
[57] |
Zhao Y, Zhao B, Wang X, et al. Macrophage transcriptome modification induced by hypoxia and lactate[J]. Exp Ther Med, 2019, 18(6): 4811-4819.
|
[58] |
Murphy MP, O’Neill LAJ. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers[J]. Cell, 2018, 174(4): 780-784.
|
[59] |
Shi W, Cassmann TJ, Bhagwate AV, et al. Lactic acid induces transcriptional repression of macrophage inflammatory response via histone acetylation[J/OL]. Cell Rep, 2024, 43(2): 113746. DOI: 10.1016/j.celrep.2024.113746.
|
[60] |
Alavi MS, Memarpour S, Pazhohan-Nezhad H, et al. Applications of poly(lactic acid) in bone tissue engineering: a review article[J]. Artif Organs, 2023, 47(9): 1423-1430.
|
[61] |
Wu J, Hu M, Jiang H, et al. Endothelial cell-derived lactate triggers bone mesenchymal stem cell histone lactylation to attenuate osteoporosis[J/OL]. Adv Sci, 2023, 10(31): e2301300. DOI: 10.1002/advs.202301300.
|
[62] |
Zhang J, Muri J, Fitzgerald G, et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization[J]. Cell Metab, 2020, 31(6): 1136-1153.e7.
|