切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 451 -461. doi: 10.3877/cma.j.issn.1674-134X.2023.04.001

专家共识

膝关节置换3D打印个性化手术工具临床应用专家共识(2023年版)
国家卫生健康委能力建设和继续教育中心《数字骨科技术临床应用能力提升研究课题》专家组, 中华医学会骨科学分会关节外科学组   
  • 收稿日期:2023-05-17 出版日期:2023-08-01
  • 基金资助:
    北京市自然科学基金(23G12187); 国家自然科学基金(82272576, 81972069, U22A20284)

Expert consensus on clinical application of 3D printed patient-specific instrumentation for total knee arthroplasty(2023)

Expert Group of National Health Commission Capacity Building And Continuing Education Center "Research on enhancing the clinical application ability of digital orthopedic technology", The Joint Surgery Branch of the Chinese Orthopaedic Association   

  • Received:2023-05-17 Published:2023-08-01
引用本文:

国家卫生健康委能力建设和继续教育中心《数字骨科技术临床应用能力提升研究课题》专家组, 中华医学会骨科学分会关节外科学组. 膝关节置换3D打印个性化手术工具临床应用专家共识(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(04): 451-461.

Expert Group of National Health Commission Capacity Building And Continuing Education Center "Research on enhancing the clinical application ability of digital orthopedic technology", The Joint Surgery Branch of the Chinese Orthopaedic Association. Expert consensus on clinical application of 3D printed patient-specific instrumentation for total knee arthroplasty(2023)[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(04): 451-461.

全膝关节置换术(TKA)是治疗终末期膝骨关节疾病的有效手段,术中截骨的精准度是影响TKA术后疗效的重要因素。3D打印个性化手术工具,可以在计算机辅助下进行PSI术前三维设计和个性化定制,术中代替传统工具进行个性化的截骨导向辅助,减少手术步骤,降低了由于手术经验、测量误差等原因导致的截骨失准和术后力线不良,提高了TKA术后的下肢力线优良率,有利于患者术后功能改善和满意度提高。因此,PSI靠其精准、便捷、个性化等特点,现已广泛用于常规人工膝关节置换领域。然而,目前缺少PSI在人工膝关节置换领域临床应用的指引性规范。本共识以现有文献证据为基础,对PSI在人工膝关节置换的临床应用进行评价,通过共识性推荐意见对PSI在当前主题领域的使用做出指导性意见。

Total knee arthroplasty (TKA) is an effective method for treating end-stage knee osteoarthritis, and the accuracy of osteotomy is an important factor affecting the postoperative efficacy of TKA. 3D printed patient-specific instrumentation (PSI) is designed and customized by computer technology preoperatively. During surgery, traditional tools are replaced with PSI to preform osteotomy procedure, resulting in higher accuracy of alignment, which may can improve postoperative function and satisfaction. Therefore, PSI has been widely used in total knee arthroplasty due to its precise, convenient, and personalized characteristics. However, there is currently a lack of guiding standards for the clinical application of PSI for TKA. On the basis of evidence-based medicine, the proposed consensus will provide the indications, preoperative design, intraoperative principles and perioperative managements of PSI for TKA.

表1 PSI辅助TKA专家共识确定的临床问题
表2 英国牛津大学循证医学中心证据分级和推荐标准
[1]
严清,鲍海星,孙俊,等. 3D打印个体化截骨模板在重度膝关节炎并下肢畸形TKA术中的应用[J]. 中国骨与关节损伤杂志2018, 33(8): 847-849.
[2]
许志庆,王武炼,庄至坤,等. 3D打印技术辅助人工全膝关节置换术治疗合并关节外畸形的膝骨关节炎[J]. 中国修复重建外科杂志2017, 31(8): 913-917.
[3]
Mayer SW, Hug KT, Hansen BJ, et al. Total knee arthroplasty in osteopetrosis using patient-specific instrumentation[J]. J Arthroplasty, 2012, 27(8): 1580.e1-1580.e4.
[4]
Vaishya R, Vijay V, AgarwalAK. Total knee arthroplasty using patient-specific blocks after prior femoral fracture without hardware removal[J]. Indian J Orthop, 2018, 52(2): 154-160.
[5]
Thienpont E, Paternostre F, Pietsch M, et al. Total knee arthroplasty with patient-specific instruments improves function and restores limb alignment in patients with extra-articular deformity[J]. Knee, 2013, 20(6): 407-411.
[6]
Sariali E, Kajetanek C, Catonné Y. Comparison of custom cutting guides based on three-dimensional computerized CT-scan planning and a conventional ancillary system based on two-dimensional planning in total knee arthroplasty: a randomized controlled trial[J]. Int Orthop, 2019, 43(11): 2529-2538.
[7]
De Vloo R, Pellikaan P, Dhollander A, et al. Three-dimensional analysis of accuracy of component positioning in total knee arthroplasty with patient specific and conventional instruments: a randomized controlled trial[J]. Knee, 2017, 24(6): 1469-1477.
[8]
Vide J, Freitas TP, Ramos A, et al. Patient-specific instrumentation in total knee arthroplasty: simpler, faster and more accurate than standard instrumentation-a randomized controlled trial[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(8): 2616-2621.
[9]
Woolson ST, Harris AHS, Wagner DW, et al. Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement[J]. J Bone Joint Surg Am, 2014, 96(5): 366-372.
[10]
Cucchi D, Menon A, Aliprandi A, etal. Patient-specific instrumentation affects rotational alignment of the femoral component in total knee arthroplasty: aprospective randomized controlled trial[J]. Orthop Surg, 2019, 11(1): 75-81.
[11]
Huijbregts HJTAM, Khan RJK, Fick DP, et al. Component alignment and clinical outcome following total knee arthroplasty: a randomised controlled trial comparing an intramedullary alignment system with patient-specific instrumentation[J]. Bone Joint J, 2016, 98-B(8): 1043-1049.
[12]
Kotela A, Kotela I. Patient-specific computed tomography based instrumentation in total knee arthroplasty: a prospective randomized controlled study[J]. Int Orthop, 2014, 38(10): 2099-2107.
[13]
Maus U, Marques CJ, Scheunemann D, et al. No improvement in reducing outliers in coronal axis alignment with patient-specific instrumentation[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(9): 2788-2796.
[14]
Parratte S, Blanc G, Boussemart T, etal. Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation[J]. Knee Surg Sports Traumatol Arthrosc, 2013, 21(10): 2213-2219.
[15]
Abane L, Anract P, Boisgard S, et al. A comparison of patient-specific and conventional instrumentation for total knee arthroplasty: a multicentre randomised controlled trial[J]. Bone Joint J, 2015, 97-B(1): 56-63.
[16]
Boonen B, Schotanus MGM, Kerens B, etal. Intra-operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomised controlled trial[J]. Knee Surg Sports Traumatol Arthrosc, 2013, 21(10): 2206-2212.
[17]
Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement[J]. Bone Joint J, 2013, 95-B(3): 354-359.
[18]
Van Leeuwen JAMJ, Snorrason F, R?hrl SM. No radiological and clinical advantages with patient-specific positioning guides in total knee replacement[J]. Acta Orthop, 2018, 89(1): 89-94.
[19]
Thienpont E, Schwab PE, Fennema P. A systematic review and meta-analysis of patient-specific instrumentation for improving alignment of the components in total knee replacement[J]. Bone Joint J, 2014, 96-B(8): 1052-1061.
[20]
Mannan A, Smith TO. Favourable rotational alignment outcomes in PSI knee arthroplasty: a Level 1 systematic review and meta-analysis[J]. Knee, 2016, 23(2): 186-190.
[21]
Zhang QM, Chen JY, Li H, et al. No evidence of superiority in reducing outliers of component alignment for patient-specific instrumentation for total knee arthroplasty: a systematic review[J]. Orthop Surg, 2015, 7(1): 19-25.
[22]
Mannan A, Smith TO, Sagar C, et al. No demonstrable benefit for coronal alignment outcomes in PSI knee arthroplasty: a systematic review and meta-analysis[J]. Orthop Traumatol Surg Res, 2015, 101(4): 461-468.
[23]
任江涛,徐丛,王建松,等. 三维打印个性化导板与传统截骨工具在全膝关节置换术中疗效比较的Meta分析[J]. 中华外科杂志2017, 55(10): 775-781.
[24]
Tandogan RN, Kort NP, Ercin E, etal. Computer-assisted surgery and patient-specific instrumentation improve the accuracy of tibial baseplate rotation in total knee arthroplasty compared to conventional instrumentation: a systematic review and meta-analysis[J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30(8): 2654-2665.
[25]
Cucchi D, Menon A, Zanini B, et al. Patient-specific instrumentation affects perioperative blood loss in total knee arthroplasty[J]. J Knee Surg, 2019, 32(6): 483-489.
[26]
吴东迎,袁峰,吴继彬,等. 3D打印截骨导板在人工全膝关节置换术中的应用[J]. 中华骨科杂志2015(9): 921-926.
[27]
Lin Y, Cai W, Xu B, et al. Patient-specific or conventional instrumentations: ameta-analysis of randomized controlled trials[J/OL]. Biomed Res Int, 2020, 2020: 2164371. DOI:10.1155/2020/2164371.
[28]
Gong S, Xu W, Wang R, et al. Patient-specific instrumentation improved axial alignment of the femoral component, operative time and perioperative blood loss after total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1083-1095.
[29]
Stone AH, Sibia US, MacDonald JH. Functional outcomes and accuracy of patient-specific instruments for total knee arthroplasty[J]. Surg Innov, 2018, 25(5): 470-475.
[30]
Predescu V, Prescura C, Olaru R, et al. Patient specific instrumentation versus conventional knee arthroplasty: comparative study[J]. Int Orthop, 2017, 41(7): 1361-1367.
[31]
Rathod PA, Deshmukh AJ, Cushner FD. Reducing blood loss in bilateral total knee arthroplasty with patient-specific instrumentation[J]. Orthop Clin North Am, 2015, 46(3): 343-350, ix.
[32]
León VJ, Lengua MA, Calvo V, et al. Use of patient-specific cutting blocks reduces blood loss after total knee arthroplasty[J]. Eur J Orthop Surg Traumatol, 2017, 27(2): 273-277.
[33]
Harold RE, MacLeod J, Butler BA, et al. Single-use custom instrumentation in total knee arthroplasty: effect on In-hospital complications, length of stay, and discharge disposition[J]. Orthopedics, 2019, 42(5): 299-303.
[34]
Pietsch M, Djahani O, Zweiger CH, et al. Custom-fit minimally invasive total knee arthroplasty: effect on blood loss and early clinical outcomes[J]. Knee Surg Sports Traumatol Arthrosc, 2013, 21(10): 2234-2240.
[35]
Chotanaphuti T, Wangwittayakul V, Khuangsirikul S, et al. The accuracy of component alignment in custom cutting blocks compared with conventional total knee arthroplasty instrumentation: prospective control trial[J]. Knee, 2014, 21(1): 185-188.
[36]
Randelli PS, Menon A, Pasqualotto S, et al. Patient-specific instrumentation does not affect rotational alignment of the femoral component and perioperative blood loss in total knee arthroplasty: aprospective, randomized, controlled trial[J]. J Arthroplasty, 2019, 34(7): 1374-1381.e1.
[37]
Ren JT, Xu C, Wang JS, et al. Meta analysis of three-dimensional printing patient-specific instrumentation versus conventional instrumentation in total knee arthroplasty[J]. Zhonghua Wai Ke Za Zhi, 2017, 55(10): 775-781.
[38]
Kotela A, Lorkowski J, Kucharzewski M, et al. Patient-specific CT-based instrumentation versus conventional instrumentation in total knee arthroplasty: a prospective randomized controlled study on clinical outcomes and In-hospital data[J]. Biomed Res Int, 2015, 2015: 165908.
[39]
Molicnik A, Naranda J, Dolinar D. Patient-matched instruments versus standard instrumentation in total knee arthroplasty: a prospective randomized study[J]. Wien Klin Wochenschr, 2015, 127(Suppl 5): S235-S240.
[40]
Tammachote N, Panichkul P, Kanitnate S. Comparison of customized cutting block and conventional cutting instrument in total knee arthroplasty: a randomized controlled trial[J]. J Arthroplasty, 2018, 33(3): 746-751.e3.
[41]
Voleti PB, Hamula MJ, Baldwin KD, et al. Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty[J]. J Arthroplasty, 2014, 29(9): 1709-1712.
[42]
Thienpont E, Schwab PE, Fennema P. Efficacy of patient-specific instruments in total knee arthroplasty: asystematic review and meta-analysis[J]. J Bone Joint Surg Am, 2017, 99(6): 521-530.
[43]
Silva AN, Tay YWA, Si Heng ST, et al. CT-based TruMatch® Personal Solutions for knee replacement Surgery … Does it really match?[J]. J Orthop, 2020, 19: 17-20.
[44]
Nabavi A, Olwill CM. Early outcome after total knee replacement using computed tomography-based patient-specific cutting blocks versus standard instrumentation[J]. J Orthop Surg (Hong Kong), 2015, 23(2): 182-184.
[45]
Daniilidis K, Tibesku CO. A comparison of conventional and patient-specific instruments in total knee arthroplasty[J]. Int Orthop, 2014, 38(3): 503-508.
[46]
Pourgiezis N, Reddy SP, Nankivell M, et al. Alignment and component position after patient-matched instrumentation versus conventional total knee arthroplasty[J]. J Orthop Surg (Hong Kong), 2016, 24(2): 170-174.
[47]
Boonen B, Schotanus MGM, Kerens B, et al. No difference in clinical outcome between patient-matched positioning guides and conventional instrumented total knee arthroplasty two years post-operatively: a multicentre, double-blind, randomised controlled trial[J]. Bone Joint J, 2016, 98-B(7): 939-944.
[48]
Reimann P, Brucker M, Arbab D, et al. Patient satisfaction-A comparison between patient-specific implants and conventional total knee arthroplasty[J]. J Orthop, 201916(3): 273-277.
[49]
Vundelinckx BJ, Bruckers L, De Mulder K, et al. Functional and radiographic short-term outcome evaluation of the visionaire system, a patient-matched instrumentation system for total knee arthroplasty[J]. J Arthroplasty, 2013, 28(6): 964-970.
[50]
Sassoon A, Nam D, Nunley R, et al. Systematic review of patient-specific instrumentation in total knee arthroplasty: new but not improved[J]. Clin Orthop Relat Res, 2015, 473(1): 151-158.
[51]
Conteduca F, Iorio R, Mazza D, et al. Patient-specific instruments in total knee arthroplasty[J]. Int Orthop, 2014, 38(2): 259-265.
[52]
Kosse NM, Heesterbeek PJC, Schimmel JJP, et al. Stability and alignment do not improve by using patient-specific instrumentation in total knee arthroplasty: a randomized controlled trial[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(6): 1792-1799.
[53]
Lyras DN, Greenhow R, Loucks C. Restoration of the mechanical axis in total knee artrhoplasty using patient-matched technology cutting blocks. A retrospective study of 132 cases[J]. Arch Bone Jt Surg, 2017, 5(5): 283-289.
[54]
Ollivier M, Parratte S, Lunebourg A, et al. The john insall award: No functional benefit after unicompartmental knee arthroplasty performed with patient-specific instrumentation: a randomized trial[J]. Clin Orthop Relat Res, 2016, 474(1): 60-68.
[55]
Rudran B, Magill H, Ponugoti N, et al. Functional outcomes in patient specific instrumentation vs. conventional instrumentation for total knee arthroplasty; a systematic review and meta-analysis of prospective studies[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 702. DOI:10.1186/s12891-022-05620-2.
[56]
Chinnappa J, Chen DB, Harris IA, et al. Total knee arthroplasty using patient-specific guides: is there a learning curve?[J]. Knee, 2015, 22(6): 613-617.
[57]
De Gori M, Adamczewski B, Jenny JY. Value of the cumulative sum test for the assessment of a learning curve: application to the introduction of patient-specific instrumentation for total knee arthroplasty in an academic department[J]. Knee, 2017, 24(3): 615-621.
[58]
Chan WC, Pinder E, Loeffler M. Patient-specific instrumentation versus conventional instrumentation in total knee arthroplasty[J]. J Orthop Surg, 2016, 24(2): 175-178.
[59]
Berend ME, Ritter MA, Meding JB, et al. Tibial component failure mechanisms in total knee arthroplasty[J]. Clin Orthop Relat Res, 2004(428): 26-34.
[60]
Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery[J]. J Arthroplasty, 2007, 22(8): 1097-1106.
[61]
Yaffe M, Luo M, Goyal N, et al. Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer-assisted surgery, and manual instrumentation: a short-term follow-up study[J]. Int J Comput Assist Radiol Surg, 2014, 9(5): 837-844.
[62]
MacDessi SJ, Jang B, Harris IA, et al. A comparison of alignment using patient specific guides, computer navigation and conventional instrumentation in total knee arthroplasty[J]. Knee, 2014, 21(2): 406-409.
[63]
Rahm S, Camenzind RS, Hingsammer A, et al. Postoperative alignment of TKA in patients with severe preoperative varus or valgus deformity: is there a difference between surgical techniques?[J/OL]. BMC Musculoskelet Disord, 2017, 18(1): 272. DOI:10.1186/s12891-017-1628-8.
[64]
Thienpont E, Fennema P, Price A. Can technology improve alignment during knee arthroplasty[J]. Knee, 2013, 20(Suppl 1): S21-S28.
[65]
Yan CH, Chiu KY, Ng FY, et al. Comparison between patient-specific instruments and conventional instruments and computer navigation in total knee arthroplasty: a randomized controlled trial[J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(12): 3637-3645.
[66]
Ollivier M, Tribot-Laspiere Q, Amzallag J, et al. Abnormal rate of intraoperative and postoperative implant positioning outliers using MRI-based patient-specific compared to computer assisted instrumentation in total knee replacement[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(11): 3441-3447.
[67]
田书畅,姚庆强,殷信道,等. iASSIST智能导航系统与三维打印个性化膝关节截骨导板技术在人工全膝关节置换术中的应用效果比较[J]. 中华外科杂志2017, 55(6): 423-429.
[68]
Shihab Z, Clayworth C, Nara N. Handheld, accelerometer-based navigation versus conventional instrumentation in total knee arthroplasty: a meta-analysis[J]. ANZ J Surg, 202090(10):2068-2079.
[69]
Kawaguchi K, Michishita K, Manabe T, et al. Comparison of an accelerometer-based portable navigation system, patient-specific instrumentation, and conventional instrumentation for femoral alignment in total knee arthroplasty[J]. Knee Surg Relat Res, 2017, 29(4): 269-275.
[70]
Steinhaus ME, McLawhorn AS, Richardson SS, et al. Handheld navigation device and patient-specific cutting guides result in similar coronal alignment for primary total knee arthroplasty: a retrospective matched cohort study[J]. HSS J, 2016, 12(3): 224-234.
[71]
Hamilton WG, Parks NL, Saxena A. Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial[J]. J Arthroplasty, 2013, 28(8): 96-100.
[72]
Teeter MG, Marsh JD, Howard JL, et al., A randomized controlled trial investigating the value of patient-specific instrumentation for total knee arthroplasty in the Canadian healthcare system [J]. Bone Joint J, 2019, 101-B(5): 565-572.
[73]
Chen JY, Chin PL, Tay DKJ, et al. Functional outcome and quality of life after patient-specific instrumentation in total knee arthroplasty[J]. J Arthroplasty, 2015, 30(10): 1724-1728.
[74]
De Haan AM, Adams JR, DeHart ML, et al. Patient-specific versus conventional instrumentation for total knee arthroplasty: peri-operative and cost differences[J]. J Arthroplasty, 2014, 29(11): 2065-2069.
[75]
Huijbregts HJTAM, Khan RJK, Sorensen E, et al. Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty[J]. Acta Orthop, 2016, 87(4): 386-394.
[76]
Ferrara F, Cipriani A, Magarelli N, et al. Implant positioning in TKA: comparison between conventional and patient-specific instrumentation[J/OL]. Orthopedics, 2015, 38(4): e271-e280. DOI:10.3928/01477447-20150402-54.
[77]
Schotanus MGM, Schoenmakers DAL, Sollie R, et al. Patient-specific instruments for total knee arthroplasty can accurately predict the component size as used peroperative[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(12): 3844-3848.
[1] 金鑫, 谢卯, 刘芸, 杨操, 杨述华, 许伟华. 个性化股骨导向器辅助初次全髋关节置换的随机对照研究[J]. 中华关节外科杂志(电子版), 2023, 17(06): 780-787.
[2] 邓华梅, 袁札根, 曾德荣, 潘珊珊, 张葆青, 欧爱华, 曹学伟. 全膝关节置换术中气压止血带应用效果与影响因素分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 788-794.
[3] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[4] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[5] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[6] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[7] 黄子荣, 罗渝鑫, 杨文瀚, 陈小虎, 谢环宇, 朱伟民. 前交叉韧带重建对膝关节稳定性影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 847-854.
[8] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[9] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[10] 孟繁宇, 周新社, 赵志, 裴立家, 刘犇. 侧位直接前方入路髋关节置换治疗偏瘫肢体股骨颈骨折[J]. 中华关节外科杂志(电子版), 2023, 17(06): 865-870.
[11] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[12] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[13] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[14] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[15] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
阅读次数
全文


摘要