[1] |
Van Melle W, Shortliffe EH, Buchanan BG. EMYCIN: a knowledge engineer’s tool for constructing rule-based expert systems//Shortliffe EH, Buchanan BG. Rule-based expert systems: the MYCIN experiments of the Stanford Heuristic Programming Project. Reading: Addison-Wesley Publishing Company, 1984: 302-313.
|
[2] |
田启川,王满丽. 深度学习算法研究进展[J]. 计算机工程与应用,2019,55(22):25-33.
|
[3] |
Xue Y, Zhang R, Deng Y, et al. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis[J/OL]. PloS one, 2017, 12(6): e0178992. DOI: 10.1371/journal.pone.0178992
|
[4] |
Sato Y, Takegami Y, Asamoto T, et al. Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 407. DOI: 10.1186/s12891-021-04260-2.
|
[5] |
Klontzas ME, Manikis GC, Nikiforaki K, et al. Radiomics and machine learning can differentiate transient osteoporosis from avascular necrosis of the hip[J/OL]. Diagnostics (Basel), 2021, 11(9): 1686.DOI: 10.3390/diagnostics11091686.
|
[6] |
Li Y, Li Y, Tian H. Deep learning-based end-to-end diagnosis system for avascular necrosis of femoral head[J]. IEEE J Biomed Health Inform, 2020, 25(6): 2093-2102.
|
[7] |
Tiulpin A, Thevenot J, Rahtu E, et al. Automatic knee osteoarthritis diagnosis from plain radiographs: a deep Learning-Based approach[J/OL]. Sci Rep, 2018, 8(1): 1727. DOI: 10.1038/s41598-018-20132-7.
|
[8] |
Norman B, Pedoia V, Noworolski A, et al. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs[J]. J Digit Imaging, 2019, 32(3): 471-477.
|
[9] |
Leung K, Zhang B, Tan J, et al. Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs:data from the osteoarthritis initiative[J]. Radiology, 2020, 296(3): 584-593.
|
[10] |
Kundu S, Ashinsky BG, Bouhrara M, et al. Enabling early detection of osteoarthritis from presymptomatic cartilage texture maps via transport-based learning[J]. Proc Natl Acad Sci USA, 2020, 117(40): 24709-24719.
|
[11] |
Pierson E, Cutler DM, Leskovec J, et al. An algorithmic approach to reducing unexplained pain disparities in underserved populations[J]. Nat Med, 2021, 27(1): 136-140.
|
[12] |
吴东,柴伟,刘星宇,等.人工智能全髋关节置换术髋臼杯放置算法的实验研究[J].中华骨科杂志,2021,41(3):176-185
|
[13] |
吴东,刘星宇,张逸凌,等.人工智能辅助全髋关节置换术三维规划系统的研发及临床应用研究[J].中国修复重建外科杂志,2020,34(9):1077-1084.
|
[14] |
Huo J, Huang G, Han D, et al. Value of 3D preoperative planning for primary total hip arthroplasty based on artificial intelligence technology[J/OL]. J Orthop Surg Res, 2021, 16(1): 156.DOI: 10.1186/s13018-021-02294-9.
|
[15] |
夏天卫,刘星宇,刘金柱,等.人工智能术前规划系统辅助人工全髋关节置换术治疗成人Crowe Ⅳ型先天性髋关节发育不良的疗效研究[J].中国修复重建外科杂志,2021,35(10):1265-1272.
|
[16] |
Lustig S, Sappey-Marinier E, Fary C, et al. Personalized alignment in total knee arthroplasty: current concepts[J/OL]. SICOT-J, 2021, 7:19. DOI: 10.1051/sicotj/2021021.
|
[17] |
宋平,吴东,刘星宇,等.一例人工智能三维规划系统辅助全膝关节置换术[J].骨科,2021,12(3):281-283.
|
[18] |
北京长木谷医疗科技有限公司.基于深度学习的单髁置换术前规划方法和相关设备:中国,CN202110185454.0[P].2021-06-15.
|
[19] |
Shah AA, Devana SK, Lee C, et al. Development of a novel,potentially Universal machine learning algorithm for prediction of complications after total hip arthroplasty[J]. J Arthroplasty, 2021, 36(5): 1655-1662. e1.
|
[20] |
Jo C,Ko S,Shin WC, et al. Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(6): 1757-1764.
|
[21] |
Cohen-Levy WB, Klemt C, Tirumala V, et al. Artificial neural networks for the prediction of transfusion rates in primary total hip arthroplasty[J/OL]. Arch Orthop Trauma Surg, 2022. DOI: 10.1007/s00402-022-04391-8.
|
[22] |
Panesar S, Cagle Y, Chander D, et al. Artificial intelligence and the future of surgical robotics[J]. Ann Surg, 2019, 270(2): 223-226.
|
[23] |
Kamara E, Robinson J, Bas MA, et al. Adoption of robotic vs fluoroscopic guidance in total hip arthroplasty:is acetabular positioning improved in the learning curve?[J]. J Arthroplasty, 2017, 32(1): 125-130.
|
[24] |
王波,周楚乔,彭正午,等.机器人辅助与传统手工全髋置换术疗效的Meta分析[J/CD].中华关节外科杂志(电子版),2021,15(5):554-561.
|
[25] |
Jacofsky DJ, Allen M. Robotics in arthroplasty: a comprehensive review[J]. J Arthroplasty, 2016, 31(10): 2353-2363.
|
[26] |
Leelasestaporn C, Tarnpichprasert T, Arirachakaran A, et al. Comparison of 1-year outcomes between MAKO versus NAVIO robot-assisted medial UKA: nonrandomized, prospective, comparative study[J/OL]. Knee Surg Relat Res, 2020, 32(1): 13. DOI: 10.1186/s43019-020-00030-x.
|
[27] |
Porcelli P, Marmotti A, Bellato E, et al. Comparing different approaches in robotic-assisted surgery for unicompartmental knee arthroplasty:outcomes at a short-term follow-up of MAKO versus NAVIO system[J]. J Biol Regul Homeost Agents, 2020, 34(4 Suppl 3): 393-404.
|
[28] |
Batailler C, Hannouche D, Benazzo F, et al. Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system[J]. Arch Orthop Trauma Surg, 2021, 141(12): 2049-2058.
|
[29] |
Liow MHL, Chin PL, Pang HN, et al. THINK surgical TSolution-One? (Robodoc) total knee arthroplasty[J/OL]. SICOT-J, 2017, 3: 63. DOI: 10.1051/sicotj/2017052.
|
[30] |
Kayani B, Konan S, Tahmassebi J, et al. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty:a prospective cohort study[J]. Bone Joint J, 2018, 100-B(7): 930-937.
|
[31] |
Kayani B, Konan S, Ayuob A, et al. Robotic technology in total knee arthroplasty:a systematic review[J]. EFORT Open Rev, 2019, 4(10): 611-617.
|
[32] |
Chin BZ, Tan SH, Chua KX, et al. Robot-assisted versus conventional total and unicompartmental knee arthroplasty:a meta-analysis of radiological and functional outcomes[J]. J Knee Surg, 2021, 34(10): 1064-1075.
|
[33] |
Khlopas A, Chughtai M, Hampp EL, et al. Robotic-arm assisted total knee arthroplasty demonstrated soft rissue protection[J]. Surg Technol Int, 2017, 30: 441-446.
|
[34] |
Kim YH, Yoon SH, Park JW. Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA?A randomized, controlled trial[J]. Clin Orthop Relat Res, 2020, 478(2): 266-275.
|
[35] |
王俏杰,柴伟,王琦,等.机器人辅助下膝关节单髁置换术初步临床结果[J].中华解剖与临床杂志,2017,22(2):108-115.
|
[36] |
北京市医疗保障局,北京市卫生健康委员会,北京市人力资源和社会保障局. 关于规范调整物理治疗类等医疗服务价格项目的通知[EB/OL].(2021-08-25).[2021-10-23].
URL
|
[37] |
Polus JS, Bloomfield RA, Vasarhelyi EM, et al. Machine learning predicts the fall risk of total hip arthroplasty patients based on wearable sensor instrumented performance tests[J]. J Arthroplasty, 2021, 36(2): 573-578.
|
[38] |
Bini SA, Shah RF, Bendich I, et al. Machine learning algorithms can use wearable sensor data to accurately predict six-week patient-reported outcome scores following joint replacement in a prospective trial[J]. J Arthroplasty, 2019, 34(10): 2242-2247.
|
[39] |
Rouzrokh P, Ramazanian T, Wyles CC, et al. Deep learning artificial intelligence model for assessment of hip dislocation risk following primary total hip arthroplasty from postoperative radiographs[J]. J Arthroplasty, 2021, 36(6): 2197-2203. e3.
|
[40] |
Rouzrokh P, Wyles CC, Philbrick KA, et al. A deep learning tool for automated radiographic measurement of acetabular component inclination and version after total hip arthroplasty[J]. J Arthroplasty, 2021, 36(7): 2510-2517.e6.
|
[41] |
Shah RF, Bini SA, Martinez AM, et al. Incremental inputs improve the automated detection of implant loosening using machine-learning algorithms[J]. Bone Joint J, 2020, 102-B(6 Supple A): 101-106.
|
[42] |
孔祥朋,付君,陈继营,等.5G通信技术远程指导机器人辅助全髋关节置换术两例[J].中国修复重建外科杂志,2020,34(11):1492-1493.
|