切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 766 -770. doi: 10.3877/cma.j.issn.1674-134X.2022.06.017

综述

人工智能在初次髋膝关节置换手术中的应用进展
管士坤1, 刘宁1,()   
  1. 1. 150001 哈尔滨医科大学附属第一医院骨三科
  • 收稿日期:2021-12-22 出版日期:2022-12-01
  • 通信作者: 刘宁
  • 基金资助:
    黑龙江省博士后科研启动金(LBH-Q19043)

Developments of artificial intelligence in primary hip and knee arthroplasties

Shikun Guan1, Ning Liu1,()   

  1. 1. Orthopaedics Department, the 1st affiliated hospital of Harbin Medical University, Harbin 150001, China
  • Received:2021-12-22 Published:2022-12-01
  • Corresponding author: Ning Liu
引用本文:

管士坤, 刘宁. 人工智能在初次髋膝关节置换手术中的应用进展[J]. 中华关节外科杂志(电子版), 2022, 16(06): 766-770.

Shikun Guan, Ning Liu. Developments of artificial intelligence in primary hip and knee arthroplasties[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(06): 766-770.

人工智能是一种基于计算机深度学习,通过类神经网络模拟、开发和延伸人类智慧的一种前沿技术。其目标是建立一个具有自我分析能力的数据集,实现计算机的自主智能运算。目前其已经广泛地应用于医学领域。在关节外科,人工智能可以通过影像学与大数据资料的深度学习参与医疗过程,包括术前诊断、手术规划、操控手术机器人、术后康复随访等。同时,人工智能作为新兴事物仍存在一些不足,也将不可避免地面对进化与挑战。因此,本文从人工智能技术的基本理论和实施应用出发,重点阐述其在初次人工髋、膝关节置换手术中应用进展,并展望其未来的发展。

Artificial intelligence is a cutting-edge technology based on computer deep learning, which simulates, develops as well as extends human intelligence through neural-like network. The aim of AI is to establish a self-analysis database, finally realizing the autonomous intelligent activities of computers. At present, it has been widely used in medical field. In joint surgery, by deep learning of imageology and big data, AI has participated in many medical processes including preoperative diagnosis, surgical planning, operation of a surgical robot, postoperative rehabilitation and follow-up. Meanwhile, as a new invention, AI still has some shortcomings, and will inevitably face evolution and challenges. Therefore, from the basic theory and clinical application, this review focused on its application in primary hip and knee arthroplasty, and looked forward to its future development.

[1]
Van Melle W, Shortliffe EH, Buchanan BG. EMYCIN: a knowledge engineer’s tool for constructing rule-based expert systems//Shortliffe EH, Buchanan BG. Rule-based expert systems: the MYCIN experiments of the Stanford Heuristic Programming Project. Reading: Addison-Wesley Publishing Company, 1984: 302-313.
[2]
田启川,王满丽. 深度学习算法研究进展[J]. 计算机工程与应用201955(22):25-33.
[3]
Xue Y, Zhang R, Deng Y, et al. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis[J/OL]. PloS one, 2017, 12(6): e0178992. DOI: 10.1371/journal.pone.0178992
[4]
Sato Y, Takegami Y, Asamoto T, et al. Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 407. DOI: 10.1186/s12891-021-04260-2.
[5]
Klontzas ME, Manikis GC, Nikiforaki K, et al. Radiomics and machine learning can differentiate transient osteoporosis from avascular necrosis of the hip[J/OL]. Diagnostics (Basel), 2021, 11(9): 1686.DOI: 10.3390/diagnostics11091686.
[6]
Li Y, Li Y, Tian H. Deep learning-based end-to-end diagnosis system for avascular necrosis of femoral head[J]. IEEE J Biomed Health Inform, 2020, 25(6): 2093-2102.
[7]
Tiulpin A, Thevenot J, Rahtu E, et al. Automatic knee osteoarthritis diagnosis from plain radiographs: a deep Learning-Based approach[J/OL]. Sci Rep, 2018, 8(1): 1727. DOI: 10.1038/s41598-018-20132-7.
[8]
Norman B, Pedoia V, Noworolski A, et al. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs[J]. J Digit Imaging, 2019, 32(3): 471-477.
[9]
Leung K, Zhang B, Tan J, et al. Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs:data from the osteoarthritis initiative[J]. Radiology, 2020, 296(3): 584-593.
[10]
Kundu S, Ashinsky BG, Bouhrara M, et al. Enabling early detection of osteoarthritis from presymptomatic cartilage texture maps via transport-based learning[J]. Proc Natl Acad Sci USA, 2020, 117(40): 24709-24719.
[11]
Pierson E, Cutler DM, Leskovec J, et al. An algorithmic approach to reducing unexplained pain disparities in underserved populations[J]. Nat Med, 2021, 27(1): 136-140.
[12]
吴东,柴伟,刘星宇,等.人工智能全髋关节置换术髋臼杯放置算法的实验研究[J].中华骨科杂志202141(3):176-185
[13]
吴东,刘星宇,张逸凌,等.人工智能辅助全髋关节置换术三维规划系统的研发及临床应用研究[J].中国修复重建外科杂志202034(9):1077-1084.
[14]
Huo J, Huang G, Han D, et al. Value of 3D preoperative planning for primary total hip arthroplasty based on artificial intelligence technology[J/OL]. J Orthop Surg Res, 2021, 16(1): 156.DOI: 10.1186/s13018-021-02294-9.
[15]
夏天卫,刘星宇,刘金柱,等.人工智能术前规划系统辅助人工全髋关节置换术治疗成人Crowe Ⅳ型先天性髋关节发育不良的疗效研究[J].中国修复重建外科杂志202135(10):1265-1272.
[16]
Lustig S, Sappey-Marinier E, Fary C, et al. Personalized alignment in total knee arthroplasty: current concepts[J/OL]. SICOT-J, 2021, 7:19. DOI: 10.1051/sicotj/2021021.
[17]
宋平,吴东,刘星宇,等.一例人工智能三维规划系统辅助全膝关节置换术[J].骨科202112(3):281-283.
[18]
北京长木谷医疗科技有限公司.基于深度学习的单髁置换术前规划方法和相关设备:中国,CN202110185454.0[P].2021-06-15.
[19]
Shah AA, Devana SK, Lee C, et al. Development of a novel,potentially Universal machine learning algorithm for prediction of complications after total hip arthroplasty[J]. J Arthroplasty, 2021, 36(5): 1655-1662. e1.
[20]
Jo CKo SShin WC, et al. Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(6): 1757-1764.
[21]
Cohen-Levy WB, Klemt C, Tirumala V, et al. Artificial neural networks for the prediction of transfusion rates in primary total hip arthroplasty[J/OL]. Arch Orthop Trauma Surg, 2022. DOI: 10.1007/s00402-022-04391-8.
[22]
Panesar S, Cagle Y, Chander D, et al. Artificial intelligence and the future of surgical robotics[J]. Ann Surg, 2019, 270(2): 223-226.
[23]
Kamara E, Robinson J, Bas MA, et al. Adoption of robotic vs fluoroscopic guidance in total hip arthroplasty:is acetabular positioning improved in the learning curve?[J]. J Arthroplasty, 2017, 32(1): 125-130.
[24]
王波,周楚乔,彭正午,等.机器人辅助与传统手工全髋置换术疗效的Meta分析[J/CD].中华关节外科杂志(电子版)202115(5):554-561.
[25]
Jacofsky DJ, Allen M. Robotics in arthroplasty: a comprehensive review[J]. J Arthroplasty, 2016, 31(10): 2353-2363.
[26]
Leelasestaporn C, Tarnpichprasert T, Arirachakaran A, et al. Comparison of 1-year outcomes between MAKO versus NAVIO robot-assisted medial UKA: nonrandomized, prospective, comparative study[J/OL]. Knee Surg Relat Res, 2020, 32(1): 13. DOI: 10.1186/s43019-020-00030-x.
[27]
Porcelli P, Marmotti A, Bellato E, et al. Comparing different approaches in robotic-assisted surgery for unicompartmental knee arthroplasty:outcomes at a short-term follow-up of MAKO versus NAVIO system[J]. J Biol Regul Homeost Agents, 2020, 34(4 Suppl 3): 393-404.
[28]
Batailler C, Hannouche D, Benazzo F, et al. Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system[J]. Arch Orthop Trauma Surg, 2021, 141(12): 2049-2058.
[29]
Liow MHL, Chin PL, Pang HN, et al. THINK surgical TSolution-One? (Robodoc) total knee arthroplasty[J/OL]. SICOT-J, 2017, 3: 63. DOI: 10.1051/sicotj/2017052.
[30]
Kayani B, Konan S, Tahmassebi J, et al. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty:a prospective cohort study[J]. Bone Joint J, 2018, 100-B(7): 930-937.
[31]
Kayani B, Konan S, Ayuob A, et al. Robotic technology in total knee arthroplasty:a systematic review[J]. EFORT Open Rev, 2019, 4(10): 611-617.
[32]
Chin BZ, Tan SH, Chua KX, et al. Robot-assisted versus conventional total and unicompartmental knee arthroplasty:a meta-analysis of radiological and functional outcomes[J]. J Knee Surg, 2021, 34(10): 1064-1075.
[33]
Khlopas A, Chughtai M, Hampp EL, et al. Robotic-arm assisted total knee arthroplasty demonstrated soft rissue protection[J]. Surg Technol Int, 2017, 30: 441-446.
[34]
Kim YH, Yoon SH, Park JW. Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA?A randomized, controlled trial[J]. Clin Orthop Relat Res, 2020, 478(2): 266-275.
[35]
王俏杰,柴伟,王琦,等.机器人辅助下膝关节单髁置换术初步临床结果[J].中华解剖与临床杂志201722(2):108-115.
[36]
北京市医疗保障局,北京市卫生健康委员会,北京市人力资源和社会保障局. 关于规范调整物理治疗类等医疗服务价格项目的通知[EB/OL].(2021-08-25).[2021-10-23].

URL    
[37]
Polus JS, Bloomfield RA, Vasarhelyi EM, et al. Machine learning predicts the fall risk of total hip arthroplasty patients based on wearable sensor instrumented performance tests[J]. J Arthroplasty, 2021, 36(2): 573-578.
[38]
Bini SA, Shah RF, Bendich I, et al. Machine learning algorithms can use wearable sensor data to accurately predict six-week patient-reported outcome scores following joint replacement in a prospective trial[J]. J Arthroplasty, 2019, 34(10): 2242-2247.
[39]
Rouzrokh P, Ramazanian T, Wyles CC, et al. Deep learning artificial intelligence model for assessment of hip dislocation risk following primary total hip arthroplasty from postoperative radiographs[J]. J Arthroplasty, 2021, 36(6): 2197-2203. e3.
[40]
Rouzrokh P, Wyles CC, Philbrick KA, et al. A deep learning tool for automated radiographic measurement of acetabular component inclination and version after total hip arthroplasty[J]. J Arthroplasty, 2021, 36(7): 2510-2517.e6.
[41]
Shah RF, Bini SA, Martinez AM, et al. Incremental inputs improve the automated detection of implant loosening using machine-learning algorithms[J]. Bone Joint J, 2020, 102-B(6 Supple A): 101-106.
[42]
孔祥朋,付君,陈继营,等.5G通信技术远程指导机器人辅助全髋关节置换术两例[J].中国修复重建外科杂志202034(11):1492-1493.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[5] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[6] 黄子荣, 罗渝鑫, 杨文瀚, 陈小虎, 谢环宇, 朱伟民. 前交叉韧带重建对膝关节稳定性影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 847-854.
[7] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[8] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[9] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[10] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[11] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[12] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[13] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[14] 丁晨梦, 胡雪慧, 闫沛, 程乔. 髋部骨折术后患者居家康复体验质性研究的Meta整合[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 365-372.
[15] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
阅读次数
全文


摘要