切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 766 -770. doi: 10.3877/cma.j.issn.1674-134X.2022.06.017

综述

人工智能在初次髋膝关节置换手术中的应用进展
管士坤1, 刘宁1,()   
  1. 1. 150001 哈尔滨医科大学附属第一医院骨三科
  • 收稿日期:2021-12-22 出版日期:2022-12-01
  • 通信作者: 刘宁
  • 基金资助:
    黑龙江省博士后科研启动金(LBH-Q19043)

Developments of artificial intelligence in primary hip and knee arthroplasties

Shikun Guan1, Ning Liu1,()   

  1. 1. Orthopaedics Department, the 1st affiliated hospital of Harbin Medical University, Harbin 150001, China
  • Received:2021-12-22 Published:2022-12-01
  • Corresponding author: Ning Liu
引用本文:

管士坤, 刘宁. 人工智能在初次髋膝关节置换手术中的应用进展[J/OL]. 中华关节外科杂志(电子版), 2022, 16(06): 766-770.

Shikun Guan, Ning Liu. Developments of artificial intelligence in primary hip and knee arthroplasties[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(06): 766-770.

人工智能是一种基于计算机深度学习,通过类神经网络模拟、开发和延伸人类智慧的一种前沿技术。其目标是建立一个具有自我分析能力的数据集,实现计算机的自主智能运算。目前其已经广泛地应用于医学领域。在关节外科,人工智能可以通过影像学与大数据资料的深度学习参与医疗过程,包括术前诊断、手术规划、操控手术机器人、术后康复随访等。同时,人工智能作为新兴事物仍存在一些不足,也将不可避免地面对进化与挑战。因此,本文从人工智能技术的基本理论和实施应用出发,重点阐述其在初次人工髋、膝关节置换手术中应用进展,并展望其未来的发展。

Artificial intelligence is a cutting-edge technology based on computer deep learning, which simulates, develops as well as extends human intelligence through neural-like network. The aim of AI is to establish a self-analysis database, finally realizing the autonomous intelligent activities of computers. At present, it has been widely used in medical field. In joint surgery, by deep learning of imageology and big data, AI has participated in many medical processes including preoperative diagnosis, surgical planning, operation of a surgical robot, postoperative rehabilitation and follow-up. Meanwhile, as a new invention, AI still has some shortcomings, and will inevitably face evolution and challenges. Therefore, from the basic theory and clinical application, this review focused on its application in primary hip and knee arthroplasty, and looked forward to its future development.

[1]
Van Melle W, Shortliffe EH, Buchanan BG. EMYCIN: a knowledge engineer’s tool for constructing rule-based expert systems//Shortliffe EH, Buchanan BG. Rule-based expert systems: the MYCIN experiments of the Stanford Heuristic Programming Project. Reading: Addison-Wesley Publishing Company, 1984: 302-313.
[2]
田启川,王满丽. 深度学习算法研究进展[J]. 计算机工程与应用201955(22):25-33.
[3]
Xue Y, Zhang R, Deng Y, et al. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis[J/OL]. PloS one, 2017, 12(6): e0178992. DOI: 10.1371/journal.pone.0178992
[4]
Sato Y, Takegami Y, Asamoto T, et al. Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 407. DOI: 10.1186/s12891-021-04260-2.
[5]
Klontzas ME, Manikis GC, Nikiforaki K, et al. Radiomics and machine learning can differentiate transient osteoporosis from avascular necrosis of the hip[J/OL]. Diagnostics (Basel), 2021, 11(9): 1686.DOI: 10.3390/diagnostics11091686.
[6]
Li Y, Li Y, Tian H. Deep learning-based end-to-end diagnosis system for avascular necrosis of femoral head[J]. IEEE J Biomed Health Inform, 2020, 25(6): 2093-2102.
[7]
Tiulpin A, Thevenot J, Rahtu E, et al. Automatic knee osteoarthritis diagnosis from plain radiographs: a deep Learning-Based approach[J/OL]. Sci Rep, 2018, 8(1): 1727. DOI: 10.1038/s41598-018-20132-7.
[8]
Norman B, Pedoia V, Noworolski A, et al. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs[J]. J Digit Imaging, 2019, 32(3): 471-477.
[9]
Leung K, Zhang B, Tan J, et al. Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs:data from the osteoarthritis initiative[J]. Radiology, 2020, 296(3): 584-593.
[10]
Kundu S, Ashinsky BG, Bouhrara M, et al. Enabling early detection of osteoarthritis from presymptomatic cartilage texture maps via transport-based learning[J]. Proc Natl Acad Sci USA, 2020, 117(40): 24709-24719.
[11]
Pierson E, Cutler DM, Leskovec J, et al. An algorithmic approach to reducing unexplained pain disparities in underserved populations[J]. Nat Med, 2021, 27(1): 136-140.
[12]
吴东,柴伟,刘星宇,等.人工智能全髋关节置换术髋臼杯放置算法的实验研究[J].中华骨科杂志202141(3):176-185
[13]
吴东,刘星宇,张逸凌,等.人工智能辅助全髋关节置换术三维规划系统的研发及临床应用研究[J].中国修复重建外科杂志202034(9):1077-1084.
[14]
Huo J, Huang G, Han D, et al. Value of 3D preoperative planning for primary total hip arthroplasty based on artificial intelligence technology[J/OL]. J Orthop Surg Res, 2021, 16(1): 156.DOI: 10.1186/s13018-021-02294-9.
[15]
夏天卫,刘星宇,刘金柱,等.人工智能术前规划系统辅助人工全髋关节置换术治疗成人Crowe Ⅳ型先天性髋关节发育不良的疗效研究[J].中国修复重建外科杂志202135(10):1265-1272.
[16]
Lustig S, Sappey-Marinier E, Fary C, et al. Personalized alignment in total knee arthroplasty: current concepts[J/OL]. SICOT-J, 2021, 7:19. DOI: 10.1051/sicotj/2021021.
[17]
宋平,吴东,刘星宇,等.一例人工智能三维规划系统辅助全膝关节置换术[J].骨科202112(3):281-283.
[18]
北京长木谷医疗科技有限公司.基于深度学习的单髁置换术前规划方法和相关设备:中国,CN202110185454.0[P].2021-06-15.
[19]
Shah AA, Devana SK, Lee C, et al. Development of a novel,potentially Universal machine learning algorithm for prediction of complications after total hip arthroplasty[J]. J Arthroplasty, 2021, 36(5): 1655-1662. e1.
[20]
Jo CKo SShin WC, et al. Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(6): 1757-1764.
[21]
Cohen-Levy WB, Klemt C, Tirumala V, et al. Artificial neural networks for the prediction of transfusion rates in primary total hip arthroplasty[J/OL]. Arch Orthop Trauma Surg, 2022. DOI: 10.1007/s00402-022-04391-8.
[22]
Panesar S, Cagle Y, Chander D, et al. Artificial intelligence and the future of surgical robotics[J]. Ann Surg, 2019, 270(2): 223-226.
[23]
Kamara E, Robinson J, Bas MA, et al. Adoption of robotic vs fluoroscopic guidance in total hip arthroplasty:is acetabular positioning improved in the learning curve?[J]. J Arthroplasty, 2017, 32(1): 125-130.
[24]
王波,周楚乔,彭正午,等.机器人辅助与传统手工全髋置换术疗效的Meta分析[J/CD].中华关节外科杂志(电子版)202115(5):554-561.
[25]
Jacofsky DJ, Allen M. Robotics in arthroplasty: a comprehensive review[J]. J Arthroplasty, 2016, 31(10): 2353-2363.
[26]
Leelasestaporn C, Tarnpichprasert T, Arirachakaran A, et al. Comparison of 1-year outcomes between MAKO versus NAVIO robot-assisted medial UKA: nonrandomized, prospective, comparative study[J/OL]. Knee Surg Relat Res, 2020, 32(1): 13. DOI: 10.1186/s43019-020-00030-x.
[27]
Porcelli P, Marmotti A, Bellato E, et al. Comparing different approaches in robotic-assisted surgery for unicompartmental knee arthroplasty:outcomes at a short-term follow-up of MAKO versus NAVIO system[J]. J Biol Regul Homeost Agents, 2020, 34(4 Suppl 3): 393-404.
[28]
Batailler C, Hannouche D, Benazzo F, et al. Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system[J]. Arch Orthop Trauma Surg, 2021, 141(12): 2049-2058.
[29]
Liow MHL, Chin PL, Pang HN, et al. THINK surgical TSolution-One? (Robodoc) total knee arthroplasty[J/OL]. SICOT-J, 2017, 3: 63. DOI: 10.1051/sicotj/2017052.
[30]
Kayani B, Konan S, Tahmassebi J, et al. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty:a prospective cohort study[J]. Bone Joint J, 2018, 100-B(7): 930-937.
[31]
Kayani B, Konan S, Ayuob A, et al. Robotic technology in total knee arthroplasty:a systematic review[J]. EFORT Open Rev, 2019, 4(10): 611-617.
[32]
Chin BZ, Tan SH, Chua KX, et al. Robot-assisted versus conventional total and unicompartmental knee arthroplasty:a meta-analysis of radiological and functional outcomes[J]. J Knee Surg, 2021, 34(10): 1064-1075.
[33]
Khlopas A, Chughtai M, Hampp EL, et al. Robotic-arm assisted total knee arthroplasty demonstrated soft rissue protection[J]. Surg Technol Int, 2017, 30: 441-446.
[34]
Kim YH, Yoon SH, Park JW. Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA?A randomized, controlled trial[J]. Clin Orthop Relat Res, 2020, 478(2): 266-275.
[35]
王俏杰,柴伟,王琦,等.机器人辅助下膝关节单髁置换术初步临床结果[J].中华解剖与临床杂志201722(2):108-115.
[36]
北京市医疗保障局,北京市卫生健康委员会,北京市人力资源和社会保障局. 关于规范调整物理治疗类等医疗服务价格项目的通知[EB/OL].(2021-08-25).[2021-10-23].

URL    
[37]
Polus JS, Bloomfield RA, Vasarhelyi EM, et al. Machine learning predicts the fall risk of total hip arthroplasty patients based on wearable sensor instrumented performance tests[J]. J Arthroplasty, 2021, 36(2): 573-578.
[38]
Bini SA, Shah RF, Bendich I, et al. Machine learning algorithms can use wearable sensor data to accurately predict six-week patient-reported outcome scores following joint replacement in a prospective trial[J]. J Arthroplasty, 2019, 34(10): 2242-2247.
[39]
Rouzrokh P, Ramazanian T, Wyles CC, et al. Deep learning artificial intelligence model for assessment of hip dislocation risk following primary total hip arthroplasty from postoperative radiographs[J]. J Arthroplasty, 2021, 36(6): 2197-2203. e3.
[40]
Rouzrokh P, Wyles CC, Philbrick KA, et al. A deep learning tool for automated radiographic measurement of acetabular component inclination and version after total hip arthroplasty[J]. J Arthroplasty, 2021, 36(7): 2510-2517.e6.
[41]
Shah RF, Bini SA, Martinez AM, et al. Incremental inputs improve the automated detection of implant loosening using machine-learning algorithms[J]. Bone Joint J, 2020, 102-B(6 Supple A): 101-106.
[42]
孔祥朋,付君,陈继营,等.5G通信技术远程指导机器人辅助全髋关节置换术两例[J].中国修复重建外科杂志202034(11):1492-1493.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[5] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[6] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[11] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[12] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[13] 宋庆成, 郑占乐, 王天瑞, 王宇钏, 张凯旋, 纳静, 蔚佳昊, 杨思繁, 宋九宏, 张英泽. “人老膝不老”:膝关节健康管理的全方位探索与实践[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 321-324.
[14] 郑占乐, 王宇钏, 蔚佳昊, 宋庆成, 张凯旋, 纳静, 王天瑞, 宋九宏, 张英泽, 王娟. 保膝须“开膝”——“开膝”在膝骨关节炎中的临床应用价值[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 325-330.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要