[1] |
Freburger JK, Holmes GM, Agans RP, et al. The rising prevalence of chronic low back pain[J]. Arch Intern Med, 2008, 169(3): 251-258.
|
[2] |
Katz JN. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences[J]. J Bone Joint Surg Am, 2006, 88 Suppl 2:21-24.
|
[3] |
Desmoulin GT, Pradhan V, Milner TE. Mechanical aspects of intervertebral disc injury and implications on biomechanics[J]. Spine (Phila Pa 1976), 2020, 45(8): E457-E464.
|
[4] |
Wang J, Sun YX, Li J. The role of mechanosensor Piezo1 in bone homeostasis and mechanobiology[J]. Dev Biol, 2022, 493:80-88.
|
[5] |
Waxenbaum J A, Reddy V, Williams C, et al. Anatomy, back, lumbar vertebrae[M/OL] Treasure Island (FL): StatPearls Publishing,2022: Bookshelf ID: NBK470583.
URL
|
[6] |
Zhang D, Feng M, Liu W, et al. From mechanobiology to mechanical repair strategies: a bibliometric analysis of biomechanical studies of intervertebral discs[J]. J Pain Res, 2022,15:2105-2122.
|
[7] |
Yan Z, Pan Y, Wang S, et al. Static compression induces ECM remodeling and integrin alpha2beta1 expression and signaling in a rat tail caudal intervertebral disc degeneration model[J]. Spine (Phila Pa 1976), 2017, 42(8): E448-E458.
|
[8] |
Zhao YT, Qin Y, Yang JS, et al. Wharton′s jelly-derived mesenchymal stem cells suppress apoptosis of nucleus pulposus cells in intervertebral disc degeneration via Wnt pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24(19): 9807-9814.
|
[9] |
Wang Y, Wang H, Zhuo Y, et al. SIRT1 alleviates high-magnitude compression-induced senescence in nucleus pulposus cells via PINK1-dependent mitophagy[J]. Aging (Albany NY), 2020, 12(16): 16126-16141.
|
[10] |
Bonnevie ED, Gullbrand SE, Ashinsky BG, et al. Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss[J]. Nat Biomed Eng, 2019, 3(12): 998-1008.
|
[11] |
Gullbrand SE, Peterson J, Mastropolo R, et al. Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo[J]. Spine J, 2014, 15(5): 1028-1033.
|
[12] |
Liu Q, Yang Z, Liu Y, et al. Cervical spinal instability causes vertebral microarchitecture change and vertebral endplate lesion in rats[J]. J Orthop Translat, 2020, 24: 209-217.
|
[13] |
郑军,辛宗山,操儒道,等.自噬机制在大鼠终板软骨退变进程中的作用[J].贵州医科大学学报,2017,42(8): 906-910.
|
[14] |
Kong D, Zheng T, Zhang M, et al. Static mechanical stress induces apoptosis in rat endplate chondrocytes through MAPK and mitochondria-dependent caspase activation signaling pathways[J/OL]. PLoS One, 2013, 8(7): e69403. DOI: 10.1371/journal.pone.0069403.
|
[15] |
Zhao L, Tian B, Xu Q, et al. Extensive mechanical tension promotes annulus fibrosus cell senescence through suppressing cellular autophagy[J/OL]. Biosci Rep, 2019, 39(4): BSR20190163. DOI: 10.1042/BSR20190163.
|
[16] |
Jiang Y, Fu L, Song Y. Responses of apoptosis and matrix metabolism of annulus fibrosus cells to different magnitudes of mechanical tension in vitro[J/OL]. Biosci Rep, 2019, 39(2): BSR20182375. DOI: 10.1042/BSR20182375.
|
[17] |
Van Schaik JP. Lumbar facet joint morphology[J]. J Spinal Disord, 2000, 13(1): 88-89.
|
[18] |
Ni S, Cao Y, Liao S, et al. Unilateral osteotomy of lumbar facet joint induces a mouse model of lumbar facet joint osteoarthritis[J]. Spine (Phila Pa 1976), 2019, 44(16): E930-E938.
|
[19] |
Li M, Xie WQ, He M, et al. Characterization of the subchondral bone and pain behavior changes in a novel bipedal standing mouse model of facet joint osteoarthritis[J/OL]. Biomed Res Int, 2020, 2020: 8861347. DOI: 10.1155/2020/8861347.
|
[20] |
Li J, Ding Z, Li Y, et al. BMSCs-Derived exosomes ameliorate pain via abrogation of aberrant nerve invasion in subchondral bone in lumbar facet joint osteoarthritis[J]. J Orthop Res, 2020, 38(3): 670-679.
|
[21] |
Schwarzer AC, Aprill CN, Derby R, et al. The prevalence and clinical features of internal disc disruption in patients with chronic low back pain[J]. Spine (Phila Pa 1976), 1995, 20(17): 1878-1883.
|
[22] |
李忠海,侯树勋.小关节源性腰痛机制研究进展[J].中国脊柱脊髓杂志,2013, 23(10): 943-946.
|
[23] |
Kirkaldy-Willis WH, Farfan HF. Instability of the lumbar spine[J]. Clin Orthop Relat Res, 1982, 5(165): 110-123.
|
[24] |
Fujiwara A, Tamai K, Yamato M, et al. The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine: an MRI study[J]. Eur Spine J, 1999, 8(5): 396-401.
|
[25] |
Eubanks JD, Lee MJ, Cassinelli E, et al. Does lumbar facet arthrosis precede disc degeneration? A postmortem study[J/OL]. Clin Orthop Relat Res, 2007, 464: 184-189.
|
[26] |
Suri P, Miyakoshi A, Hunter DJ, et al. Does lumbar spinal degeneration begin with the anterior structures? A study of the observed epidemiology in a community-based population[J/OL]. BMC Musculoskelet Disord, 2011, 12(1): 202. DOI: 10.1186/1471-2474-12-202.
|
[27] |
Coste B, Mathur J, Schmidt M, et al. Piezo1 and piezo2 are essential components of distinct mechanically activated cation channels[J]. Science, 2010, 330(6000): 55-60.
|
[28] |
Cox CD, Gottlieb PA. Amphipathic molecules modulate PIEZO1 activity[J]. Biochem Soc Trans, 2019, 47(6): 1833-1842.
|
[29] |
Wu J, Lewis AH, Grandl JT. Tension,and Transduction-The function and regulation of piezo ion channels[J]. Trends Biochem Sci, 2017, 42(1): 57-71.
|
[30] |
Zhu D, Zhang G, Guo X, et al. A new hope in spinal degenerative diseases: Piezo1[J/OL]. Biomed Res Int, 2021, 2021: 6645193. DOI: 10.1155/2021/6645193.
|
[31] |
王天宝,李晓飞,冷萍,等.椎间盘髓核细胞应力模型中Piezo1蛋白的表达[J].青岛大学医学院学报,2017, 53(03): 257-260.
|
[32] |
殷涛,邵进,张岩,等.机械敏感性离子通道蛋白Piezo1在椎间盘髓核细胞中的表达及意义[J].中国医药导报,2019, 16(12): 77-80.
|
[33] |
Shi S, Kang XJ, Zhou Z, et al. Excessive mechanical stress-induced intervertebral disc degeneration is related to Piezo1 overexpression triggering the imbalance of autophagy/apoptosis in human nucleus pulpous[J/OL]. Arthritis Res Ther, 2022, 24(1): 119. DOI: 10.1186/s13075-022-02804-y.
|
[34] |
Wang B, Ke W, Wang K, et al. Mechanosensitive ion channel Piezo1 activated by matrix stiffness regulates oxidative stress-induced senescence and apoptosis in human intervertebral disc degeneration[J/OL]. Oxid Med Cell Longev, 2021, 2021: 8884922. DOI: 10.1155/2021/8884922.
|
[35] |
Zhang F, Zhao X, Shen H, et al. Molecular mechanisms of cell death in intervertebral disc degeneration(Review)[J]. Int J Mol Med, 2016, 37(6): 1439-1448.
|
[36] |
谭洪宇,赵亮,张扬.shRNA-Piezo1对异常机械牵张应力作用下髓核细胞凋亡的影响及相关机制[J].中国脊柱脊髓杂志,2018, 28(12): 1125-1132.
|
[37] |
Yang Q, Zhou Y, Wang J, et al. Study on the mechanism of excessive apoptosis of nucleus pulposus cells induced by shRNA-Piezo1 under abnormal mechanical stretch stress[J]. J Cell Biochem, 2019, 120(3): 3989-3997.
|
[38] |
Sun Y, Leng P, Song M, et al. Piezo1 activates the NLRP3 inflammasome in nucleus pulposus cell-mediated by Ca(2+)/NF-kappaB pathway[J/OL]. Int Immunopharmacol, 2020, 85: 106681. DOI: 10.1016/j.intimp.2020.106681.
|
[39] |
Wu J, Chen Y, Liao Z, et al. Self-amplifying loop of NF-kappaB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells and intervertebral disc degeneration[J]. Mol Ther, 2022, 30(10): 3241-3256.
|
[40] |
Huang X, Chen D, Liang C, et al. Swelling-mediated mechanical stimulation regulates differentiation of adipose-derived mesenchymal stem cells for intervertebral disc repair using injectable UCST microgels[J/OL]. Adv Healthc Mater, 2022: e2201925. DOI: 10.1002/adhm.202201925.
|
[41] |
Ding B, Xiao L, Xu H. YAP1 controls degeneration of human cartilage chondrocytes in response to mechanical tension[J]. Cell Biol Int, 2022, 46(10): 1637-1648.
|
[42] |
Sun Z, Zheng X, Li S, et al. Single impact injury of vertebral endplates without structural disruption,initiates disc degeneration through piezo1 mediated inflammation and metabolism dysfunction[J]. Spine (Phila Pa 1976), 2022, 47(5): E203-E213.
|
[43] |
Yamashita T, Minaki Y, Ozaktay AC, et al. A morphological study of the fibrous capsule of the human lumbar facet joint[J]. Spine (Phila Pa 1976), 1996, 21(5): 538-543.
|
[44] |
刘祥伟,李志军.关节突关节形态学的研究进展[J].世界最新医学信息文摘,2015, 15(15): 79-80.
|
[45] |
Rustenburg C, Emanuel KS, Peeters M, et al. Osteoarthritis and intervertebral disc degeneration:quite different,quite similar[J/OL]. JOR Spine, 2018, 1(4): e1033. DOI: 10.1002/jsp2.1033.
|
[46] |
Lee W, Leddy HA, Chen Y, et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage[J]. Proc Natl Acad Sci USA, 2014, 111(47): E5114-E5122.
|
[47] |
Lee W, Nims RJ, Savadipour A, et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis[J/OL]. Proc Natl Acad Sci USA, 2021, 118(13): e2001611118. DOI: 10.1073/pnas.2001611118.
|
[48] |
Hu Y, Li K, Swahn H, et al. Transcriptomic analyses of joint tissues during osteoarthritis development in a rat model reveal dysregulated mechanotransduction and extracellular matrix pathways[J/OL]. Osteoarthritis Cartilage, 2022, S1063-4584(22)00880-9. DOI: 10.1016/j.joca.2022.10.003. Online ahead of print.
|
[49] |
Sun Y, Leng P, Guo PC, et al. G protein coupled estrogen receptor attenuates mechanical stress-mediated apoptosis of chondrocyte in osteoarthritis via suppression of Piezo1[J/OL]. Molecular Medicine, 2021, 27(1): 96. DOI: 10.1186/s10020-021-00360-w.
|
[50] |
Ren X, Li B, Xu C, et al. High expression of Piezo1 induces senescence in chondrocytes through calcium ions accumulation[J]. Biochem Biophys Res Commun, 2022, 607: 138-145.
|
[51] |
Gao W, Hasan H, Anderson D E, et al. The role of mechanically-activated ion channels Piezo1, Piezo2, and TRPV4 in chondrocyte mechanotransduction and mechano-therapeutics for osteoarthritis[J/OL]. Front Cell Dev Biol, 2022, 10:885224. DOI: 10.3389/fcell.2022.885224.
|
[52] |
Du G, Li L, Zhang X, et al. Roles of TRPV4 and piezo channels in stretch-evoked Ca(2+)response in chondrocytes[J]. Exp Biol Med (Maywood), 2020, 245(3): 180-189.
|